Suppr超能文献

用于可穿戴和柔性传感器的高拉伸性自粘性多功能水凝胶。

High stretchable and self-adhesive multifunctional hydrogel for wearable and flexible sensors.

作者信息

Zhong Hao, Shan Wubin, Liang Lei, Jiang Xianzheng, Wu Linmei

机构信息

Hunan Electrical College of Technology, Xiangtan, 411101, China.

Hunan Institute of Engineering, Xiangtan, 411104, China.

出版信息

Heliyon. 2024 Jul 25;10(15):e35187. doi: 10.1016/j.heliyon.2024.e35187. eCollection 2024 Aug 15.

Abstract

Ionic conductive hydrogel has recently garnered significant research attention due to its potential applications in the field of wearable and flexible electronics. Nonetheless, the integration of multifunctional and synergistic advantages, including reliable electronic properties, high swelling capacity, exceptional mechanical characteristics, and self-adhesive properties, presents an ongoing challenge. In this study, we have developed an ionic conductive hydrogel through the co-polymerization of 4-Acryloylmorpholine (ACMO) and sodium acrylate using UV curing technology. The hydrogel exhibits excellent mechanical properties, high conductivity, superior swelling capacity, and remarkable self-adhesive attributes. The hydrogel serves as a highly sensitive strain sensor, enabling precise monitoring of both substantial and subtle human motions. Furthermore, the hydrogel demonstrates the capability to adhere to human skin, functioning as a human-machine interface for the detection of physiological signals, including electromyogram (EMG) signals, with low interfacial impedance. This work is anticipated to yield a new class of stretchable and conductive materials with diverse potential applications, ranging from flexible sensors and wearable bio-electronics to contributions in the field of artificial intelligence.

摘要

离子导电水凝胶因其在可穿戴和柔性电子领域的潜在应用,最近受到了广泛的研究关注。然而,将多功能和协同优势集成在一起,包括可靠的电子性能、高膨胀能力、优异的机械特性和自粘性能,仍然是一个持续的挑战。在本研究中,我们通过使用紫外光固化技术,使4-丙烯酰基吗啉(ACMO)和丙烯酸钠发生共聚反应,开发出了一种离子导电水凝胶。该水凝胶具有优异的机械性能、高导电性、卓越的膨胀能力和显著的自粘特性。这种水凝胶可作为一种高灵敏度应变传感器,能够精确监测人体的大幅度和微小动作。此外,该水凝胶还能够粘附在人体皮肤上,作为人机界面用于检测生理信号,包括肌电图(EMG)信号,且具有低界面阻抗。预计这项工作将产生一类新型的可拉伸导电材料,具有从柔性传感器、可穿戴生物电子学到人工智能领域贡献等多种潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53e5/11332826/d1b694726744/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验