Luo Qingliang, Wang Kangkang, Zhang Qiangqiang, Ding Wei, Wang Rongwu, Li Linlin, Peng Shengjie, Ji Dongxiao, Qin Xiaohong
Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016, China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413369. doi: 10.1002/anie.202413369. Epub 2024 Oct 17.
The rational design of carbon-supported transition metal single-atom catalysts necessitates precise atomic positioning within the precursor. However, structural collapse during pyrolysis can occlude single atoms, posing significant challenges in controlling both their utilization and coordination environment. Herein, we present a surface atom adsorption-flash heating (FH) strategy, which ensures that the pre-designed carbon nanofiber structure remains intact during heating, preventing unforeseen collapse effects and enabling the formation of metal atoms in nano-environments with either tetra-nitrogen or penta-nitrogen coordination at different flash heating temperatures. Theoretical calculations and in situ Raman spectroscopy reveal that penta-nitrogen coordinated cobalt atoms (Co-N) promote a lower energy pathway for oxygen reduction and oxygen evolution reactions compared to the commonly formed Co-N sites. This strategy ensures that Co-N sites are fully exposed on the surface, achieving exceptionally high atomic utilization. The turnover frequency (65.33 s) is 47.4 times higher than that of 20 % Pt/C under alkaline conditions. The porous, flexible carbon nanofibers significantly enhance zinc-air battery performance, with a high peak power density (273.8 mW cm), large specific capacity (784.2 mAh g), and long-term cycling stability over 600 h. Additionally, the flexible fiber-shaped zinc-air battery can power wearable devices, demonstrating significant potential in flexible electronics applications.
碳负载过渡金属单原子催化剂的合理设计需要在前体中实现精确的原子定位。然而,热解过程中的结构坍塌可能会包裹单原子,在控制其利用率和配位环境方面带来重大挑战。在此,我们提出一种表面原子吸附-快速加热(FH)策略,该策略可确保预先设计的碳纳米纤维结构在加热过程中保持完整,防止意外的坍塌效应,并能够在不同的快速加热温度下形成具有四氮或五氮配位的纳米环境中的金属原子。理论计算和原位拉曼光谱表明,与通常形成的Co-N位点相比,五氮配位的钴原子(Co-N)促进了更低能量的氧还原和析氧反应途径。该策略确保Co-N位点完全暴露在表面,实现了极高的原子利用率。在碱性条件下,周转频率(65.33 s)比20%的Pt/C高47.4倍。多孔、柔性的碳纳米纤维显著提高了锌空气电池的性能,具有高峰功率密度(273.8 mW cm)、大比容量(784.2 mAh g)以及超过600 h的长期循环稳定性。此外,柔性纤维状锌空气电池可为可穿戴设备供电,在柔性电子应用中显示出巨大潜力。