Suppr超能文献

锚定在碳骨架中的双金属硫化物SbS/FeS异质结构用于快速稳定的钠存储

Bimetallic Sulfide SbS/FeS Heterostructure Anchored in a Carbon Skeleton for Fast and Stable Sodium Storage.

作者信息

Yu Lianghao, Li Zhuanxia, Cai Wu, Xie Haoliang, Wang Jing, Ling Yihan, Huang Fei, Li Hengzheng, Zhu Guang, Jin Huile, Wang Shun

机构信息

Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China.

Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China.

出版信息

Small. 2024 Nov;20(46):e2404059. doi: 10.1002/smll.202404059. Epub 2024 Aug 20.

Abstract

Sodium-ion batteries (SIBs) are a promising substitute for lithium batteries due to their abundant resources and low cost. Metal sulfides are regarded as highly attractive anode materials due to their superior mechanical stability and high theoretical specific capacity. Guided by the density functional theory (DFT) calculations, 3D porous network shaped SbS/FeS composite materials with reduced graphene oxide (rGO) through a simple solvothermal and calcination method, which is predicted to facilitate favorable Na ion diffusion, is synthesized. Benefiting from the well-designed structure, the resulting SbS/FeS exhibit a remarkable reversible capacity of 536 mAh g after 2000 cycles at a current density of 5 A g and long high-rate cycle life of 3000 cycles at a current density of 30 A g as SIBs anode. In situ and ex situ analyses are carried out to gain further insights into the storage mechanisms and processes of sodium ions in SbS/FeS@rGO composites. The significantly enhanced sodium storage capacity is attributed to the unique structure and the heterogeneous interface between SbS and FeS. This study illustrates that combining rGO with heterogeneous engineering can provide an ideal strategy for the synthesis of new hetero-structured anode materials with outstanding battery performance for SIBs.

摘要

钠离子电池(SIBs)因其资源丰富且成本低,是锂电池的一种有前景的替代品。金属硫化物因其优异的机械稳定性和高理论比容量,被视为极具吸引力的负极材料。在密度泛函理论(DFT)计算的指导下,通过简单的溶剂热和煅烧方法合成了具有还原氧化石墨烯(rGO)的三维多孔网络状SbS/FeS复合材料,预计该材料有助于钠离子的良好扩散。得益于精心设计的结构,所得的SbS/FeS作为SIBs负极,在5 A g的电流密度下经过2000次循环后展现出536 mAh g的显著可逆容量,在30 A g的电流密度下具有3000次循环的长高速循环寿命。进行了原位和非原位分析,以进一步深入了解SbS/FeS@rGO复合材料中钠离子的存储机制和过程。显著增强的储钠容量归因于独特的结构以及SbS和FeS之间的异质界面。本研究表明,将rGO与异质工程相结合可为合成具有出色SIBs电池性能的新型异质结构负极材料提供理想策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验