RTX BBN Technologies, Cambridge, Massachusetts 02138, United States.
Biological Design Center, Boston University, Boston, Massachusetts 02215, United States.
ACS Synth Biol. 2024 Sep 20;13(9):2899-2911. doi: 10.1021/acssynbio.4c00296. Epub 2024 Aug 20.
With the rise of new DNA part libraries and technologies for assembling DNA, synthetic biologists are increasingly constructing and screening combinatorial libraries to optimize their biological designs. As combinatorial libraries are used to generate data on design performance, new rules for composing biological designs will emerge. Most formal frameworks for combinatorial design, however, do not yet support formal comparison of design composition, which is needed to facilitate automated analysis and machine learning in massive biological design spaces. To address this need, we introduce a combinatorial design framework called GOLDBAR. Compared with existing frameworks, GOLDBAR enables synthetic biologists to intersect and merge the rules for entire classes of biological designs to extract common design motifs and infer new ones. Here, we demonstrate the application of GOLDBAR to refine/validate design spaces for TetR-homologue transcriptional logic circuits, verify the assembly of a partial gene cluster, and infer novel gene clusters for the biosynthesis of rebeccamycin. We also discuss how GOLDBAR could be used to facilitate grammar-based machine learning in synthetic biology.
随着新的 DNA 元件文库和 DNA 组装技术的兴起,合成生物学家越来越多地构建和筛选组合文库,以优化他们的生物设计。由于组合文库用于生成设计性能数据,因此将出现新的组成生物设计的规则。然而,大多数组合设计的正式框架尚未支持设计组成的正式比较,这对于在大规模生物设计空间中进行自动化分析和机器学习是必要的。为了解决这个需求,我们引入了一个名为 GOLDBAR 的组合设计框架。与现有框架相比,GOLDBAR 使合成生物学家能够交叉和合并整个类别的生物设计规则,以提取常见的设计基元和推断新的设计基元。在这里,我们演示了 GOLDBAR 在 TetR 同源转录逻辑电路设计空间的细化/验证、部分基因簇组装以及再贝卡霉素生物合成的新基因簇推断方面的应用。我们还讨论了 GOLDBAR 如何用于促进合成生物学中的基于语法的机器学习。