Suppr超能文献

浓“盐包水”锂盐电解质中的多样微观结构和类准离子液体传输机制:一项分子动力学研究

Diverse Microstructures and Quasi-Ionic Liquid-like Transport Mechanisms in Concentrated "Water-in-Salt" Lithium Salt Electrolytes: A Molecular Dynamics Study.

作者信息

Sha Maolin, Liu Fengjun, Miao Meng, Meng Qiangqiang, Luo Fabao, Wei Xin

机构信息

Department of Physics and Materials Engineering, Hefei Normal University, Hefei 230061, China.

School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei 230061, China.

出版信息

J Phys Chem Lett. 2024 Aug 29;15(34):8736-8742. doi: 10.1021/acs.jpclett.4c01708. Epub 2024 Aug 20.

Abstract

"Water-in-salt"(WIS) electrolytes as potential green and nonflammable electrolytes are currently applied in various energy storage devices, such as lithium-ion batteries and supercapacitors. However, the microstructure at molecular scale and fast ion transport mechanism in such aqueous electrolytes are still under heavy debate due to the complex interactions among ions and water. Here, molecular dynamics simulations are used to study the microstructure and ion transport behaviors from the very dilute LiTFSI/water solution to the highly concentrated WIS electrolytes. It revealed that the diverse microstructures such as completely hydrated ions, ion complexes, and bridge-water molecules are jointly responsible for the electrochemical stability of WIS electrolytes. Diffusion model analysis showed that the Li ions exhibit a vehicular transport mechanism with first shell water molecules and structural diffusion mechanism with TFSI anions. The lithium ion and its first hydration shell act as a single cationic entity. The entity forms a quasi-ionic liquid-like dynamic transport structure with associated anions. Our study challenges previous findings that the high transport dynamics of lithium ions arises from their transport in water-rich nanodomains in high-concentration WIS systems.

摘要

“盐包水”(WIS)电解质作为潜在的绿色、不可燃电解质,目前应用于各种储能设备,如锂离子电池和超级电容器。然而,由于离子与水之间复杂的相互作用,这种水性电解质在分子尺度上的微观结构以及快速离子传输机制仍存在激烈争论。在此,利用分子动力学模拟研究了从极稀的LiTFSI/水溶液到高浓度WIS电解质的微观结构和离子传输行为。结果表明,完全水合离子、离子络合物和桥连水分子等多种微观结构共同决定了WIS电解质的电化学稳定性。扩散模型分析表明,锂离子与第一壳层水分子表现出载流子传输机制,与TFSI阴离子表现出结构扩散机制。锂离子及其第一水合壳层作为一个单一的阳离子实体。该实体与相关阴离子形成类似准离子液体的动态传输结构。我们的研究对之前的研究结果提出了挑战,即高浓度WIS体系中锂离子的高传输动力学源于其在富水纳米域中的传输。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验