Wang Xixi, Ge Yiyao, Sun Mingzi, Xu Zhihang, Huang Biao, Li Lujiang, Zhou Xichen, Zhang Shuai, Liu Guanghua, Shi Zhenyu, Zhang An, Chen Bo, Wa Qingbo, Luo Qinxin, Zhu Ye, Huang Bolong, Zhang Hua
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.
J Am Chem Soc. 2024 Aug 28;146(34):24141-24149. doi: 10.1021/jacs.4c08905. Epub 2024 Aug 20.
Facet control and phase engineering of metal nanomaterials are both important strategies to regulate their physicochemical properties and improve their applications. However, it is still a challenge to tune the exposed facets of metal nanomaterials with unconventional crystal phases, hindering the exploration of the facet effects on their properties and functions. In this work, by using Pd nanoparticles with unconventional hexagonal close-packed (, 2H type) phase, referred to as 2H-Pd, as seeds, a selective epitaxial growth method is developed to tune the predominant growth directions of secondary materials on 2H-Pd, forming Pd@NiRh nanoplates (NPLs) and nanorods (NRs) with 2H phase, referred to as 2H-Pd@2H-NiRh NPLs and NRs, respectively. The 2H-Pd@2H-NiRh NRs expose more (100) and (101) facets on the 2H-NiRh shells compared to the 2H-Pd@2H-NiRh NPLs. Impressively, when used as electrocatalysts toward hydrogen oxidation reaction (HOR), the 2H-Pd@2H-NiRh NRs show superior activity compared to the NiRh alloy with conventional face-centered cubic () phase (-NiRh) and the 2H-Pd@2H-NiRh NPLs, revealing the crucial role of facet control in enhancing the catalytic performance of unconventional-phase metal nanomaterials. Density functional theory (DFT) calculations further unravel that the excellent HOR activity of 2H-Pd@2H-NiRh NRs can be attributed to the more exposed (100) and (101) facets on the 2H-NiRh shells, which possess high electron transfer efficiency, optimized H* binding energy, enhanced OH* binding energy, and a low energy barrier for the rate-determining step during the HOR process.
金属纳米材料的晶面控制和相工程都是调节其物理化学性质并改善其应用的重要策略。然而,调控具有非常规晶相的金属纳米材料的暴露晶面仍然是一项挑战,这阻碍了对晶面对其性质和功能影响的探索。在这项工作中,通过使用具有非常规六方密堆积(, 2H型)相的钯纳米颗粒(称为2H-Pd)作为种子,开发了一种选择性外延生长方法来调控二次材料在2H-Pd上的主要生长方向,形成具有2H相的Pd@NiRh纳米片(NPLs)和纳米棒(NRs),分别称为2H-Pd@2H-NiRh NPLs和NRs。与2H-Pd@2H-NiRh NPLs相比,2H-Pd@2H-NiRh NRs在2H-NiRh壳层上暴露更多的(100)和(101)晶面。令人印象深刻的是,当用作氢氧化反应(HOR)的电催化剂时,2H-Pd@2H-NiRh NRs比具有常规面心立方()相的NiRh合金(-NiRh)和2H-Pd@2H-NiRh NPLs表现出更高的活性,揭示了晶面控制在提高非常规相金属纳米材料催化性能中的关键作用。密度泛函理论(DFT)计算进一步揭示,2H-Pd@2H-NiRh NRs优异的HOR活性可归因于2H-NiRh壳层上更多暴露的(100)和(101)晶面,这些晶面具有高电子转移效率、优化的H结合能、增强的OH结合能以及HOR过程中速率决定步骤的低能垒。