Gschwind Wanja, Nagy Gyula, Primetzhofer Daniel, Ott Sascha
Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden.
Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden.
Dalton Trans. 2024 Sep 10;53(35):14779-14785. doi: 10.1039/d4dt01782j.
The postsynthetic metalation (PSM) of metal-organic frameworks (MOFs) with intrinsic metal binding sites is an intriguing strategy to introduce catalytic function into MOFs. The spatial distribution of the catalytic sites within the MOF crystal will affect the efficiency of the material, but the factors that govern depth distribution of the introduced metal sites are often not well understood. Herein, we employ Rutherford backscattering spectrometry (RBS) to investigate the metal distribution in a series of post-synthetically metalated mixed linker bpdc/BPY UiO-67 (UiO = Universitet i Oslo, bpdc = biphenyl-dicarboxylate, BPY = 2,2'-bipyridine-5,5'-dicarboxylate) single crystals as a function of linker ratio and metalation time. The RBS spectra reveal large differences in the depth distribution of inserted Ni ions, and core/shell architectures are observed in high BPY materials at shorter incubation times. The incubation times to achieve uniform metal incorporation increases with increasing BPY ratios in the materials, suggesting that the presence of the BPY linkers slow down metal uptake. We propose a combination of ionic interactions and pore clogging, where coordinated ions reduce the available pore space for further ions to diffuse deeper into the framework as reasons for the observed trends. The observations are likely relevant for other mixed-linker MOF systems, and understanding the effect that linker ratios have on PSM and cation distribution will aid in future optimizations of catalytic MOFs.
具有固有金属结合位点的金属有机框架(MOF)的合成后金属化(PSM)是一种将催化功能引入MOF的有趣策略。MOF晶体中催化位点的空间分布会影响材料的效率,但控制引入金属位点深度分布的因素通常还不太清楚。在此,我们采用卢瑟福背散射光谱法(RBS)来研究一系列合成后金属化的混合连接体bpdc/BPY UiO-67(UiO = 奥斯陆大学,bpdc = 联苯二甲酸酯,BPY = 2,2'-联吡啶-5,5'-二羧酸酯)单晶中金属的分布,该分布是连接体比例和金属化时间的函数。RBS光谱揭示了插入的Ni离子在深度分布上的巨大差异,并且在较短孵育时间下的高BPY材料中观察到核/壳结构。实现均匀金属掺入的孵育时间随着材料中BPY比例的增加而增加,这表明BPY连接体的存在减缓了金属吸收。我们提出离子相互作用和孔堵塞的组合,其中配位离子减少了可供进一步离子扩散到框架更深层的可用孔空间,作为观察到的趋势的原因。这些观察结果可能与其他混合连接体MOF系统相关,并且了解连接体比例对PSM和阳离子分布的影响将有助于未来催化MOF的优化。