Department of Medical Biology and Center for New Antibacterial Strategies (CANS), UT- The Arctic University of Norway, Tromsø, Norway.
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
Microbiol Spectr. 2024 Oct 3;12(10):e0060224. doi: 10.1128/spectrum.00602-24. Epub 2024 Aug 20.
The dCas9-based Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference (CRISPRi) gene regulation technique requires two components: a catalytically inactive Cas9 protein (dCas9) and a single-guide RNA that targets the gene of interest. This system is commonly activated by expressing dCas9 through an inducible gene promoter, but these inducers may affect cellular physiology, and accessibility and permeability of the inducer are limited in relevant model systems. Here, we have developed an alternative approach for CRISPRi activation in the clinical isolate USA300 LAC, where dCas9 was expressed through endogenous virulence gene promoters (vgp); coagulase, autolysin, or fibronectin-binding protein A. Additionally, we integrated a fluorescent reporter gene into the vgp-CRISPRi system to monitor the activity of the -controlling promoter. Testing the efficacy of vgp-CRISPRi by inducing growth arrest (when targeting penicillin-binding protein 1), downregulating target gene expression, or blocking coagulase-dependent coagulation of blood plasma, we provide a proof-of-concept demonstration that the virulence gene promoter-driven CRISPRi system is functional in .IMPORTANCEThe presented inducer-free, endogenous virulence gene promoter-induced, dCas9-based Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference (CRISPRi system addresses several shortcomings related to the use of inducer-dependent systems such as effects on cell physiology or limitations in permeability, and it avoids the high, putatively toxic levels of dCas9 in CRISPRi systems controlled by strong, constitutive promoters.
基于 dCas9 的成簇规律间隔短回文重复 (CRISPR) 干扰 (CRISPRi) 基因调控技术需要两个组件:一种无催化活性的 Cas9 蛋白 (dCas9) 和一种靶向感兴趣基因的单指导 RNA。该系统通常通过表达 dCas9 来激活诱导型基因启动子,但这些诱导剂可能会影响细胞生理学,并且诱导剂的可及性和通透性在相关模型系统中受到限制。在这里,我们开发了一种替代方法,用于在临床分离株 USA300 LAC 中激活 CRISPRi,其中 dCas9 通过内源性毒力基因启动子 (vgp) 表达; 凝固酶、自溶酶或纤维结合蛋白 A。此外,我们将荧光报告基因整合到 vgp-CRISPRi 系统中,以监测 - 控制启动子的活性。通过诱导生长停滞 (靶向青霉素结合蛋白 1 时)、下调靶基因表达或阻断凝固酶依赖性血浆凝固来测试 vgp-CRISPRi 的功效,我们提供了一个概念验证,证明了毒力基因启动子驱动的 CRISPRi 系统在 USA300 LAC 中是功能性的。
重要性
所提出的无诱导剂、内源性毒力基因启动子诱导、基于 dCas9 的成簇规律间隔短回文重复 (CRISPR) 干扰 (CRISPRi) 系统解决了与使用诱导剂依赖性系统相关的几个缺点,例如对细胞生理学的影响或通透性的限制,并且它避免了由强组成性启动子控制的 CRISPRi 系统中 dCas9 的高、潜在毒性水平。
Front Cell Infect Microbiol. 2018-2-27
Methods Mol Biol. 2019
Appl Environ Microbiol. 2017-5-31
ACS Synth Biol. 2019-10-18
mSphere. 2019-2-13
Prog Mol Biol Transl Sci. 2021
Appl Environ Microbiol. 2019-5-30
mBio. 2024-1-16
Nucleic Acids Res. 2023-4-24
Nat Protoc. 2022-2
Cell Host Microbe. 2021-1-13
Nat Commun. 2020-6-2