Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China.
J Phys Chem A. 2024 Aug 29;128(34):7167-7176. doi: 10.1021/acs.jpca.4c04335. Epub 2024 Aug 20.
Compound I (Cpd I) plays a pivotal role in substrate transformations within the catalytic cycle of cytochrome P450 enzymes (P450s). A key constituent of Cpd I is the iron(IV)-oxo unit, a structural motif also found in other heme enzymes and nonheme enzymes. In this study, we performed ab initio valence bond (VB) calculations, employing the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) methods, to unveil the bonding nature of this vital "Fe(IV)═O″ unit in bioinorganic chemistry. Comparisons were drawn with the triplet O molecule, which shares some electronic characteristics with iron(IV)-oxo. Additionally, Cpd I models of horseradish peroxidase (HRP) and catalase (CAT) were analyzed to assess the proximal ligand effect on the electronic structure of iron(IV)-oxo. Our VB analysis underscores the significant role of noncovalent resonance effects in shaping the iron(IV)-oxo bonding. The resonance stabilization within the π and σ frameworks occurs to comparable degrees, with additional stabilization resulting from resonance between VB structures from these frameworks. Furthermore, we elucidated the substantial influence of proximal and equatorial ligands in modulating the relative significance of different VB structures. Notably, in the presence of these ligands, iron(IV)-oxo is better described as iron(III)-oxyl or iron(II)-oxygen, displaying weak covalent character but enhanced by resonance effects. Although both species exhibit diradicaloid characters, resonance stabilization in iron(IV)-oxo is weaker than in O. Further exploration using the Laplacian of electron density shows that, unlike O, which exhibits a charge concentration region between its two oxygen atoms, iron(IV)-oxo species display a charge depletion region.
化合物 I(Cpdi)在细胞色素 P450 酶(P450s)的催化循环中对底物转化起着关键作用。Cpdi 的一个关键组成部分是铁(IV)-氧单位,这一结构基序也存在于其他血红素酶和非血红素酶中。在这项研究中,我们进行了从头算价键(VB)计算,使用价键自洽场(VBSCF)和呼吸轨道价键(BOVB)方法,揭示生物无机化学中这种重要的“Fe(IV)═O”单元的键合性质。我们将其与三重态 O 分子进行了比较,后者具有一些与铁(IV)-氧相似的电子特性。此外,我们还分析了辣根过氧化物酶(HRP)和过氧化氢酶(CAT)的 Cpdi 模型,以评估近位配体对铁(IV)-氧电子结构的影响。我们的 VB 分析强调了非共价共振效应对铁(IV)-氧键合的重要作用。π 和 σ 框架内的共振稳定发生在可比程度上,由于来自这些框架的 VB 结构之间的共振,还会产生额外的稳定。此外,我们阐明了近位和赤道配体在调节不同 VB 结构相对重要性方面的重要作用。值得注意的是,在这些配体存在的情况下,铁(IV)-氧更好地被描述为铁(III)-氧自由基或铁(II)-氧,表现出较弱的共价特征,但共振效应增强。尽管这两种物质都表现出自由基特征,但铁(IV)-氧的共振稳定性比 O 弱。使用电子密度的拉普拉斯进一步探索表明,与 O 不同,O 在两个氧原子之间表现出电荷集中区域,而铁(IV)-氧物质显示出电荷耗尽区域。