Saifullah Mohammad S M, Rajak Anil Kumar, Hofhuis Kevin A, Tiwale Nikhil, Mahfoud Zackaria, Testino Andrea, Karadan Prajith, Vockenhuber Michaela, Kazazis Dimitrios, Valiyaveettil Suresh, Ekinci Yasin
Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI 5232, Switzerland.
PiBond Oy, Kutojantie 2B, Espoo 02630, Finland.
ACS Nano. 2024 Sep 3;18(35):24076-24094. doi: 10.1021/acsnano.4c03939. Epub 2024 Aug 20.
Resists that enable high-throughput and high-resolution patterning are essential in driving the semiconductor technology forward. The ultimate patterning performance of a resist in lithography is limited because of the trade-off between resolution, line-width roughness, and sensitivity; improving one or two of these parameters typically leads to a loss in the third. As the patterned feature sizes approach angstrom scale, the trade-off between these three metrics becomes increasingly hard to resolve and calls for a fundamental rethinking of the resist chemistry. Low-molecular-mass monodispersed metal-containing resists of high atom economy can provide not only very high resolution but also very low line-width roughness without sacrificing sensitivity. Here we describe a modular metal-containing resist platform (molecular mass <500 Da) where a molecular resist consists of just two components: a metal and a radical initiator bonded to it. This simple system not only is amenable to high-resolution electron beam lithography (EBL) and extreme ultraviolet lithography (EUVL) but also unites them mechanistically, giving a consolidated perspective of molecular and chemical processes happening during exposure. Irradiation of the resist leads to the production of secondary electrons that generate radicals in the initiator bonded to metal. This brings about an intramolecular rearrangement and causes solubility switch in the exposed resist. We demonstrate record 1.9-2.0 nm isolated patterns and 7 nm half-pitch dense line-space features over a large area using EBL. With EUVL, 12 nm half-pitch line-space features are shown at a dose of 68 mJ/cm. In both of these patterning techniques, the line-width roughness was found to be ≤2 nm, a record low value for any resist platform, also leading to a low-performance trade-off metric, factor, of 0.6 × 10 mJ·nm. With the ultimate resolution limited by instrumental factors, potential patterning at the level of a unit cell can be envisaged, making low-molecular-mass resists best poised for angstrom-scale lithography.
能够实现高通量和高分辨率图案化的光刻胶对于推动半导体技术发展至关重要。由于分辨率、线宽粗糙度和灵敏度之间的权衡,光刻胶在光刻中的最终图案化性能受到限制;改善其中一两个参数通常会导致第三个参数的损失。随着图案化特征尺寸接近埃尺度,这三个指标之间的权衡变得越来越难以解决,需要从根本上重新思考光刻胶化学。具有高原子经济性的低分子量单分散含金属光刻胶不仅可以提供非常高的分辨率,还可以提供非常低的线宽粗糙度,而不会牺牲灵敏度。在这里,我们描述了一个模块化的含金属光刻胶平台(分子量<500 Da),其中分子光刻胶仅由两个组件组成:一种金属和与之键合的自由基引发剂。这个简单的系统不仅适用于高分辨率电子束光刻(EBL)和极紫外光刻(EUVL),而且在机理上统一了它们,给出了曝光过程中发生的分子和化学过程的综合观点。光刻胶的辐照会产生二次电子,这些二次电子会在与金属键合的引发剂中产生自由基。这会导致分子内重排,并使曝光的光刻胶发生溶解度切换。我们使用EBL在大面积上展示了创纪录的1.9 - 2.0 nm孤立图案和7 nm半间距密集线间距特征。对于EUVL,在68 mJ/cm²的剂量下展示了12 nm半间距线间距特征。在这两种图案化技术中,发现线宽粗糙度≤2 nm,这是任何光刻胶平台的创纪录低值,也导致了0.6×10⁻³ mJ·nm的低性能权衡因子。由于最终分辨率受仪器因素限制,可以设想在晶胞水平上进行潜在的图案化,这使得低分子量光刻胶最适合用于埃尺度光刻。