Suppr超能文献

当前美国基于卫星的反演中对野火细模态气溶胶负荷及其辐射效应的严重低估。

Substantial Underestimation of Fine-Mode Aerosol Loading from Wildfires and Its Radiative Effects in Current Satellite-Based Retrievals over the United States.

机构信息

State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.

Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park, Maryland 20740, United States.

出版信息

Environ Sci Technol. 2024 Sep 3;58(35):15661-15671. doi: 10.1021/acs.est.4c02498. Epub 2024 Aug 20.

Abstract

Wildfires generate abundant smoke primarily composed of fine-mode aerosols. However, accurately measuring the fine-mode aerosol optical depth (fAOD) is highly uncertain in most existing satellite-based aerosol products. Deep learning offers promise for inferring fAOD, but little has been done using multiangle satellite data. We developed an innovative angle-dependent deep-learning model (ADLM) that accounts for angular diversity in dual-angle observations. The model captures aerosol properties observed from dual angles in the contiguous United States and explores the potential of Greenhouse gases Observing Satellite-2's (GOSAT-2) measurements to retrieve fAOD at a 460 m spatial resolution. The ADLM demonstrates a strong performance through rigorous validation against ground-based data, revealing small biases. By comparison, the official fAOD product from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and the Multiangle Imaging Spectroradiometer (MISR) during wildfire events is underestimated by more than 40% over western USA. This leads to significant differences in estimates of aerosol radiative forcing (ARF) from wildfires. The ADLM shows more than 20% stronger ARF than the MODIS, VIIRS, and MISR estimates, highlighting a greater impact of wildfire fAOD on Earth's energy balance.

摘要

野火产生大量主要由细颗粒气溶胶组成的烟雾。然而,在大多数现有的基于卫星的气溶胶产品中,准确测量细颗粒气溶胶光学深度(fAOD)非常不确定。深度学习为推断 fAOD 提供了希望,但利用多角度卫星数据的研究却很少。我们开发了一种创新的角度相关深度学习模型(ADLM),该模型考虑了双角度观测中的角度多样性。该模型可以捕获来自美国大陆的双角度观测的气溶胶特性,并探索了温室气体观测卫星-2(GOSAT-2)测量在 460 米空间分辨率下获取 fAOD 的潜力。ADLM 通过与地面数据的严格验证显示出强大的性能,显示出较小的偏差。相比之下,在野火事件期间,来自中分辨率成像光谱仪(MODIS)、可见光红外成像辐射计套件(VIIRS)和多角度成像光谱辐射计(MISR)的官方 fAOD 产品对美国西部的估计值低估了 40%以上。这导致了野火气溶胶辐射强迫(ARF)估计的显著差异。ADLM 显示出比 MODIS、VIIRS 和 MISR 估计值强 20%以上的 ARF,突出了野火 fAOD 对地球能量平衡的更大影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验