Wu Youtong, Li Xueting, Tao Jie, Zhang Yuqi, Lu Xihua
College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Shanghai 200082, China.
J Colloid Interface Sci. 2025 Jan;677(Pt B):704-718. doi: 10.1016/j.jcis.2024.08.094. Epub 2024 Aug 14.
Photonic ionogels with dual electrical and optical output have been intensively studied. However, tunable temperature-responsive photonic ionogel assembled by thermosensitive nanogels has not been studied yet. Herein, an innovative approach to fabricate photonic ionogels has been developed for smart wearable devices with tunable temperature sensitivity and structural color. Firstly, poly(isopropylacrylamide-r-phenylmaleanilic acid) P(NIPAm-r-NPMA) nanogels self-assemble into photonic crystals in 2-hydroxyethyl acrylate (HEA), water, and the ionic liquid of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. And then robust photonic ionogels are developed through a polymerization of 2-hydroxyethyl acrylate crosslinked by poly(ethylene glycol) diacrylate (PEGDA). The incorporation of the ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, enhances the mechanical strength of photonic ionogels and tunes the temperature-sensitivity of the ionogels, making them adaptable to various environmental conditions. The findings demonstrate that these ionogels can serve dual functions in smart wearable devices, combining electrical and optical signal outputs due to the conductivity of the ionic liquid and structural color from the nanogel assembly. The resultant photonic ionogels exhibit exceptional substrate adhesion, mechanical stability, and fast resilience. More significantly, the nanogels within these ionogels serve as the building blocks of photonic crystals (PCs) endow with angle-independent coloration and enhance stretchability beyond 200 %, while the stretchability of the ionogles without the nanogels is only about 100 %. Our photonic ionogels with tunable temperature-sensitivity and dual outputs will open an avenue to the development of the innovative smart wearable devices.
具有双电和光输出的光子离子凝胶已得到深入研究。然而,由热敏纳米凝胶组装而成的具有可调温度响应的光子离子凝胶尚未得到研究。在此,已开发出一种创新方法来制备用于具有可调温度敏感性和结构颜色的智能可穿戴设备的光子离子凝胶。首先,聚(异丙基丙烯酰胺 - r - 苯基马来酸)P(NIPAm - r - NPMA)纳米凝胶在丙烯酸 - 2 - 羟乙酯(HEA)、水和1 - 乙基 - 3 - 甲基咪唑三氟甲磺酸盐离子液体中自组装成光子晶体。然后通过聚乙二醇二丙烯酸酯(PEGDA)交联的丙烯酸 - 2 - 羟乙酯聚合反应制备出坚固的光子离子凝胶。离子液体1 - 乙基 - 3 - 甲基咪唑三氟甲磺酸盐的加入增强了光子离子凝胶的机械强度并调节了离子凝胶的温度敏感性,使其能够适应各种环境条件。研究结果表明,这些离子凝胶可在智能可穿戴设备中发挥双重功能,由于离子液体的导电性和纳米凝胶组装产生的结构颜色,结合了电信号和光信号输出。所得的光子离子凝胶表现出优异的基材附着力、机械稳定性和快速恢复能力。更重要的是,这些离子凝胶中的纳米凝胶作为光子晶体(PCs)的构建单元,具有与角度无关的着色特性,并将拉伸性提高到200%以上,而没有纳米凝胶的离子凝胶的拉伸性仅约为100%。我们具有可调温度敏感性和双输出的光子离子凝胶将为创新智能可穿戴设备的开发开辟一条道路。