School of Computer Science and Technology, Soochow University, Suzhou, 215006, China.
Neural Netw. 2024 Nov;179:106596. doi: 10.1016/j.neunet.2024.106596. Epub 2024 Aug 6.
De novo molecular design is the process of learning knowledge from existing data to propose new chemical structures that satisfy the desired properties. By using de novo design to generate compounds in a directed manner, better solutions can be obtained in large chemical libraries with less comparison cost. But drug design needs to take multiple factors into consideration. For example, in polypharmacology, molecules that activate or inhibit multiple target proteins produce multiple pharmacological activities and are less susceptible to drug resistance. However, most existing molecular generation methods either focus only on affinity for a single target or fail to effectively balance the relationship between multiple targets, resulting in insufficient validity and desirability of the generated molecules. To address the problems, an approach called clustered Pareto-based reinforcement learning (CPRL) is proposed. In CPRL, a pre-trained model is constructed to grasp existing molecular knowledge in a supervised learning manner. In addition, the clustered Pareto optimization algorithm is presented to find the best solution between different objectives. The algorithm first extracts an update set from the sampled molecules through the designed aggregation-based molecular clustering. Then, the final reward is computed by constructing the Pareto frontier ranking of the molecules from the updated set. To explore the vast chemical space, a reinforcement learning agent is designed in CPRL that can be updated under the guidance of the final reward to balance multiple properties. Furthermore, to increase the internal diversity of the molecules, a fixed-parameter exploration model is used for sampling in conjunction with the agent. The experimental results demonstrate that CPRL is capable of balancing multiple properties of the molecule and has higher desirability and validity, reaching 0.9551 and 0.9923, respectively.
从头分子设计是指从现有数据中学习知识,提出满足所需性质的新化学结构的过程。通过使用从头设计以有方向的方式生成化合物,可以在具有较小比较成本的大型化学库中获得更好的解决方案。但是药物设计需要考虑多个因素。例如,在多药理学中,激活或抑制多个靶蛋白的分子会产生多种药理活性,并且不易产生抗药性。然而,大多数现有的分子生成方法要么只关注对单个靶标的亲和力,要么无法有效地平衡多个靶标之间的关系,导致生成分子的有效性和可取性不足。为了解决这些问题,提出了一种称为基于聚类 Pareto 的强化学习 (CPRL) 的方法。在 CPRL 中,构建了一个经过预训练的模型,以通过监督学习方式掌握现有的分子知识。此外,提出了聚类 Pareto 优化算法来在不同目标之间找到最佳解决方案。该算法首先通过设计的基于聚合的分子聚类从采样分子中提取更新集。然后,通过构建来自更新集的分子的 Pareto 前沿排名来计算最终奖励。为了探索广阔的化学空间,CPRL 中设计了一个强化学习代理,该代理可以在最终奖励的指导下进行更新,以平衡多个属性。此外,为了增加分子的内部多样性,使用固定参数探索模型与代理一起进行采样。实验结果表明,CPRL 能够平衡分子的多个属性,并且具有更高的可取性和有效性,分别达到 0.9551 和 0.9923。