Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland.
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.
Water Environ Res. 2024 Aug;96(8):e11104. doi: 10.1002/wer.11104.
In this study, we investigated the temporal and spatial quantitative changes in the concentration of antibiotic resistance gene (ARG) markers in a municipal wastewater treatment plant (WWTP). Four ARGs conferring resistance to different classes of antibiotics (ermB, sul1, tet[W], and bla) and a gene used as a proxy for ARG pollution (intl1) were quantified in two separate sampling campaigns covering two and half years of operation of the WWTP. First, a systematic monthly monitoring of multiple points in the inlet and the outlet revealed an absolute decrease in the concentration of all analyzed ARGs. However, the relative abundance of sul1 and intl1 genes relative to the total bacterial load (estimated using the universal marker 16S rDNA) increased in the outlet samples as compared to the inlet. To pinpoint the exact stage of removal and/or enrichment within the WWTP, a second sampling including the stages of the biological treatment was performed bimonthly. This revealed a distinct enrichment of sul1 and intl1 genes during the biological treatment phase. Moreover, the temporal and spatial variations in ARG abundance patterns within the WWTP underscored the complexity of the dynamics associated with the removal of ARGs during wastewater treatment. Understanding these dynamics is pivotal for developing efficient strategies to mitigate the dissemination of ARGs in aquatic environments. PRACTITIONER POINTS: Regular monitoring of ARG markers in WWTPs is essential to assess temporal and spatial changes, aiding in the development of effective mitigation strategies. Understanding the dynamics of ARG abundance during biological treatment is crucial for optimizing processes and minimizing dissemination in aquatic environments. Increased relative abundance of certain ARGs highlights potential enrichment during wastewater treatment, necessitating targeted interventions. Systematic monitoring of multiple points within WWTPs can provide valuable insights into the efficacy of treatment processes in reducing ARG levels over time. The complexity of ARG abundance patterns underscores the need to develop holistic approaches to tackle antibiotic resistance in wastewater systems.
在本研究中,我们调查了城市污水处理厂(WWTP)中抗生素耐药基因(ARG)标记物浓度的时空定量变化。我们在 WWTP 运行两年半的两个独立采样活动中,定量检测了赋予不同抗生素类耐药性的四个 ARG(ermB、sul1、tet[W]和 bla)和一个用作 ARG 污染指标的基因(intl1)。首先,我们对进水口和出水口的多个点进行了系统的每月监测,结果显示所有分析的 ARG 浓度均呈绝对下降。然而,与进水相比,出口样品中 sul1 和 intl1 基因相对于总细菌负荷(使用通用标记 16S rDNA 估计)的相对丰度增加。为了准确确定 WWTP 内的去除和/或富集的确切阶段,我们进行了第二次包括生物处理阶段的双月采样。这表明在生物处理阶段,sul1 和 intl1 基因明显富集。此外,WWTP 内 ARG 丰度模式的时空变化突出了与废水处理过程中 ARG 去除相关的动态的复杂性。了解这些动态对于开发有效策略以减轻水生环境中 ARG 的传播至关重要。
定期监测 WWTP 中的 ARG 标记物对于评估时空变化至关重要,有助于制定有效的缓解策略。了解生物处理过程中 ARG 丰度的动态对于优化过程和最大限度减少水生环境中的传播至关重要。某些 ARG 的相对丰度增加突出了在废水处理过程中富集的可能性,需要进行有针对性的干预。系统监测 WWTP 内的多个点可以提供有关随着时间的推移处理过程降低 ARG 水平的功效的有价值的见解。ARG 丰度模式的复杂性突显了需要采用整体方法来解决废水系统中的抗生素耐药性问题。