Cook Lauren S J, Briscoe Andrew G, Fonseca Vera G, Boenigk Jens, Woodward Guy, Bass David
Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK; Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; NatureMetrics, Surrey Research Park, Guildford GU2 7HJ, UK.
Trends Microbiol. 2025 Jan;33(1):48-65. doi: 10.1016/j.tim.2024.07.003. Epub 2024 Aug 19.
Microbial environmental DNA and RNA (collectively 'eNA') originate from a diverse and abundant array of microbes present in environmental samples. These eNA signals, largely representing whole organisms, serve as a powerful complement to signals derived from fragments or remnants of larger organisms. Integrating microbial data into the toolbox of ecosystem assessments and biotic indices therefore has the potential to transform how we use eNA data to understand biodiversity dynamics and ecosystem functions, and to inform the next generation of environmental monitoring. Incorporating holobiont and Tree of Life approaches into eNA analyses offers further holistic insight into the range of ecological interactions between microbes and other organisms, paving the way for advancing our understanding of, and ultimately manipulating ecosystem properties pertinent to environmental management, conservation, wildlife health, and food production.
微生物环境DNA和RNA(统称为“eNA”)源自环境样本中存在的多种多样且数量丰富的微生物。这些eNA信号在很大程度上代表了完整的生物体,是来自大型生物体片段或残骸的信号的有力补充。因此,将微生物数据整合到生态系统评估和生物指数的工具库中,有可能改变我们利用eNA数据来理解生物多样性动态和生态系统功能的方式,并为下一代环境监测提供信息。将共生体和生命之树方法纳入eNA分析,能进一步全面洞察微生物与其他生物体之间生态相互作用的范围,为增进我们对与环境管理、保护、野生动物健康和粮食生产相关的生态系统特性的理解并最终对其进行调控铺平道路。