Suppr超能文献

基于钙钛矿探针的机器学习成像模型用于癌症的快速病理诊断。

Perovskite Probe-Based Machine Learning Imaging Model for Rapid Pathologic Diagnosis of Cancers.

机构信息

Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.

University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

出版信息

ACS Nano. 2024 Sep 3;18(35):24295-24305. doi: 10.1021/acsnano.4c06351. Epub 2024 Aug 20.

Abstract

Accurately distinguishing tumor cells from normal cells is a key issue in tumor diagnosis, evaluation, and treatment. Fluorescence-based immunohistochemistry as the standard method faces the inherent challenges of the heterogeneity of tumor cells and the lack of big data analysis of probing images. Here, we have demonstrated a machine learning-driven imaging method for rapid pathological diagnosis of five types of cancers (breast, colon, liver, lung, and stomach) using a perovskite nanocrystal probe. After conducting the bioanalysis of survivin expression in five different cancers, high-efficiency perovskite nanocrystal probes modified with the survivin antibody can recognize the cancer tissue section at the single cell level. The tumor to normal (T/N) ratio is 10.3-fold higher than that of a conventional fluorescent probe, which can successfully differentiate between tumors and adjacent normal tissues within 10 min. The features of the fluorescence intensity and pathological texture morphology have been extracted and analyzed from 1000 fluorescence images by machine learning. The final integrated decision model makes the area under the receiver operating characteristic curve (area under the curve) value of machine learning classification of breast, colon, liver, lung, and stomach above 90% while predicting the tumor organ of 92% of positive patients. This method demonstrates a high T/N ratio probe in the precise diagnosis of multiple cancers, which will be good for improving the accuracy of surgical resection and reducing cancer mortality.

摘要

准确地区分肿瘤细胞和正常细胞是肿瘤诊断、评估和治疗的关键问题。基于荧光的免疫组织化学作为标准方法面临着肿瘤细胞异质性和探测图像大数据分析缺乏的固有挑战。在这里,我们展示了一种使用钙钛矿纳米晶探针的机器学习驱动的成像方法,用于快速诊断五种癌症(乳腺、结肠、肝、肺和胃)的病理。在对五种不同癌症中的生存素表达进行生物分析后,用生存素抗体修饰的高效钙钛矿纳米晶探针可以在单细胞水平上识别癌症组织切片。肿瘤与正常组织(T/N)比值比传统荧光探针高 10.3 倍,可在 10 分钟内成功区分肿瘤和相邻正常组织。从 1000 张荧光图像中提取并通过机器学习分析了荧光强度和病理纹理形态的特征。最终的综合决策模型使机器学习对乳腺、结肠、肝、肺和胃的分类的受试者工作特征曲线下面积(曲线下面积)值均超过 90%,同时预测阳性患者中有 92%的肿瘤器官。该方法在多种癌症的精确诊断中展示了高 T/N 比值探针,这将有助于提高手术切除的准确性并降低癌症死亡率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验