Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium.
Department of Cellular and Molecular Medicine, Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium.
Bone Res. 2024 Aug 20;12(1):44. doi: 10.1038/s41413-024-00343-7.
The vitamin D receptor (VDR) plays a critical role in the regulation of mineral and bone homeostasis. Upon binding of 1α,25-dihydroxyvitamin D to the VDR, the activation function 2 (AF2) domain repositions and recruits coactivators for the assembly of the transcriptional machinery required for gene transcription. In contrast to coactivator-induced transcriptional activation, the functional effects of coactivator-independent VDR signaling remain unclear. In humans, mutations in the AF2 domain are associated with hereditary vitamin D-resistant rickets, a genetic disorder characterized by impaired bone mineralization and growth. In the present study, we used mice with a systemic or conditional deletion of the VDR-AF2 domain (Vdr) to study coactivator-independent VDR signaling. We confirm that ligand-induced transcriptional activation was disabled because the mutant VDR protein was unable to interact with coactivators. Systemic Vdr mice developed short, undermineralized bones with dysmorphic growth plates, a bone phenotype that was more pronounced than that of systemic Vdr knockout (Vdr) mice. Interestingly, a rescue diet that is high in calcium, phosphate, and lactose, normalized this phenotype in Vdr, but not in Vdr mice. However, osteoblast- and osteoclast-specific Vdr mice did not recapitulate this bone phenotype indicating coactivator-independent VDR effects are more important in other organs. In addition, RNA-sequencing analysis of duodenum and kidney revealed a decreased expression of VDR target genes in systemic Vdr mice, which was not observed in Vdr mice. These genes could provide new insights in the compensatory (re)absorption of minerals that are crucial for bone homeostasis. In summary, coactivator-independent VDR effects contribute to mineral and bone homeostasis.
维生素 D 受体 (VDR) 在调节矿物质和骨骼内稳态中起着关键作用。1α,25-二羟维生素 D 与 VDR 结合后,激活功能 2 (AF2) 结构域重新定位并募集共激活因子,用于组装转录所需的转录机制。与共激活因子诱导的转录激活相反,共激活因子非依赖性的 VDR 信号的功能影响尚不清楚。在人类中,AF2 结构域的突变与遗传性维生素 D 抵抗性佝偻病有关,这是一种遗传疾病,其特征是骨骼矿化和生长受损。在本研究中,我们使用系统或条件性缺失 VDR-AF2 结构域 (Vdr) 的小鼠来研究共激活因子非依赖性的 VDR 信号。我们证实配体诱导的转录激活被禁用,因为突变的 VDR 蛋白无法与共激活因子相互作用。系统性 Vdr 小鼠的骨骼短小,矿化不足,生长板畸形,骨表型比系统性 Vdr 敲除 (Vdr) 小鼠更为明显。有趣的是,高钙、磷和乳糖的挽救饮食使 Vdr 小鼠的表型正常化,但 Vdr 小鼠则不然。然而,成骨细胞和破骨细胞特异性 Vdr 小鼠并没有重现这种骨表型,表明共激活因子非依赖性的 VDR 作用在其他器官更为重要。此外,对十二指肠和肾脏的 RNA 测序分析显示,系统性 Vdr 小鼠中 VDR 靶基因的表达降低,而 Vdr 小鼠则没有观察到这种情况。这些基因可以为骨骼内稳态中矿物质的代偿性(再)吸收提供新的见解。总之,共激活因子非依赖性的 VDR 作用有助于矿物质和骨骼内稳态。