Faculty of Computing and Information Technology, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
Sci Rep. 2024 Aug 20;14(1):19261. doi: 10.1038/s41598-024-69997-x.
Medical image fusion (MIF) techniques are proficient in combining medical images in distinct morphologies to obtain a reliable medical analysis. A single modality image could not offer adequate data for an accurate analysis. Therefore, a novel multimodal MIF-based artificial intelligence (AI) method has been presented. MIF approaches fuse multimodal medical images for exact and reliable medical recognition. Multimodal MIF improves diagnostic accuracy and clinical decision-making by combining complementary data in different imaging modalities. This article presents a new multimodal medical image fusion model utilizing Modified DWT with an Arithmetic Optimization Algorithm (MMIF-MDWTAOA) approach. The MMIF-MDWTAOA approach aims to generate a fused image with the significant details and features from each modality, leading to an elaborated depiction for precise interpretation by medical experts. The bilateral filtering (BF) approach is primarily employed for noise elimination. Next, the image decomposition process uses a modified discrete wavelet transform (MDWT) approach. However, the approximation coefficient of modality_1 and the detailed coefficient of modality_2 can be fused interchangeably. Furthermore, a fusion rule is derived from combining the multimodality data, and the AOA model is enforced to ensure the optimum selection of the fusion rule parameters. A sequence of simulations is accomplished to validate the enhanced output of the MMIF-MDWTAOA technique. The investigational validation of the MMIF-MDWTAOA technique showed the highest entropy values of 7.568 and 7.741 bits/pixel over other approaches.
医学图像融合(MIF)技术擅长将不同形态的医学图像组合,以获得可靠的医学分析。单一模态的图像无法提供准确分析所需的充分数据。因此,提出了一种新的基于多模态 MIF 的人工智能(AI)方法。MIF 方法通过融合多模态医学图像来进行准确可靠的医学识别。多模态 MIF 通过结合不同成像模式下的互补数据来提高诊断准确性和临床决策能力。本文提出了一种新的基于改进离散小波变换和算术优化算法(MMIF-MDWTAOA)的多模态医学图像融合模型。MMIF-MDWTAOA 方法旨在从每种模式生成具有重要细节和特征的融合图像,为医学专家进行精确解释提供更详细的描述。双边滤波(BF)方法主要用于消除噪声。然后,使用改进的离散小波变换(MDWT)方法进行图像分解。然而,可以交替融合模式_1 的近似系数和模式_2 的详细系数。此外,从组合多模态数据中推导出融合规则,并实施 AOA 模型以确保融合规则参数的最优选择。完成了一系列模拟来验证 MMIF-MDWTAOA 技术的增强输出。对 MMIF-MDWTAOA 技术的研究验证表明,与其他方法相比,该技术的熵值最高可达 7.568 和 7.741 位/像素。