Kolak Magdalena, Gerry Stephen, Huras Hubert, Al Naimi Ammar, Fox Karin A, Braun Thorsten, Stefanovic Vedran, van Beekhuizen Heleen, Morel Olivier, Paping Alexander, Bertholdt Charline, Calda Pavel, Lastuvka Zdenek, Jaworowski Andrzej, Savukyne Egle, Collins Sally
Department of Obstetrics and Perinatology, Medical College, Jagiellonian University, Krakow, Poland.
Centre for Statistics in Medicine, University of Oxford, Oxford, UK.
Acta Obstet Gynecol Scand. 2025 Apr;104 Suppl 1(Suppl 1):20-28. doi: 10.1111/aogs.14941. Epub 2024 Aug 20.
This study aimed to validate the Sargent risk stratification algorithm for the prediction of placenta accreta spectrum (PAS) severity using data collected from multiple centers and using the multicenter data to improve the model.
We conducted a multicenter analysis using data collected for the IS-PAS database. The Sargent model's effectiveness in distinguishing between abnormally adherent placenta (FIGO grade 1) and abnormally invasive placenta (FIGO grades 2 and 3) was evaluated. A new model was developed using multicenter data from the IS-PAS database.
The database included 315 cases of suspected PAS, of which 226 had fully documented standardized ultrasound signs. The final diagnosis was normal placentation in 5, abnormally adherent placenta/FIGO grade 1 in 43, and abnormally invasive placenta/FIGO grades 2 and 3 in 178. The external validation of the Sargent model revealed moderate predictive accuracy in a multicenter setting (C-index 0.68), compared to its higher accuracy in a single-center context (C-index 0.90). The newly developed model achieved a C-index of 0.74.
The study underscores the difficulty in developing universally applicable PAS prediction models. While models like that of Sargent et al. show promise, their reproducibility varies across settings, likely due to the interpretation of the ultrasound signs. The findings support the need for updating the current ultrasound descriptors and for the development of any new predictive models to use data collected by different operators in multiple clinical settings.
本研究旨在通过收集多中心数据并利用这些数据改进模型,验证用于预测胎盘植入谱系(PAS)严重程度的萨金特风险分层算法。
我们使用为IS - PAS数据库收集的数据进行了多中心分析。评估了萨金特模型在区分异常粘连胎盘(FIGO 1级)和异常侵入性胎盘(FIGO 2级和3级)方面的有效性。利用来自IS - PAS数据库的多中心数据开发了一个新模型。
该数据库包括315例疑似PAS病例,其中226例有充分记录的标准化超声征象。最终诊断为正常胎盘植入5例,异常粘连胎盘/FIGO 1级43例,异常侵入性胎盘/FIGO 2级和3级178例。萨金特模型的外部验证显示,在多中心环境中预测准确性中等(C指数0.68),而在单中心环境中准确性较高(C指数0.90)。新开发的模型C指数达到0.74。
该研究强调了开发普遍适用的PAS预测模型的困难。虽然萨金特等人的模型显示出前景,但其可重复性在不同环境中有所不同,可能是由于超声征象的解读。研究结果支持更新当前超声描述符以及开发任何新的预测模型以使用不同操作者在多个临床环境中收集的数据的必要性。