Suppr超能文献

前交叉韧带重建术后临床失败风险预测的集成算法

Ensemble Algorithm for Risk Prediction of Clinical Failure After Anterior Cruciate Ligament Reconstruction.

作者信息

Zhang Tianlun, Ye Zipeng, Cai Jiangyu, Chen Jiebo, Zheng Ting, Xu Junjie, Zhao Jinzhong

机构信息

Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Orthop J Sports Med. 2024 Aug 19;12(8):23259671241261695. doi: 10.1177/23259671241261695. eCollection 2024 Aug.

Abstract

BACKGROUND

Patient-specific risk profiles of clinical failure after anterior cruciate ligament reconstruction (ACLR) are meaningful for preoperative surgical planning and postoperative rehabilitation guidance.

PURPOSE

To create an ensemble algorithm machine learning (ML) model and ML-based web-based tool that can predict the patient-specific risk of clinical failure after ACLR.

STUDY DESIGN

Cohort study; Level of evidence, 3.

METHODS

Included were 432 patients (mean age, 26.8 ± 8.4 years; 74.1% male) who underwent anatomic double-bundle ACLR with hamstring tendon autograft between January 2010 and February 2019. The primary outcome was the probability of clinical failure at a minimum 2-year follow-up. The authors included 24 independent variables for feature selection and model development. The data set was split randomly into training sets (75%) and test sets (25%). Models were built using 4 ML algorithms: extreme gradient boosting, random forest, light gradient boosting machine, and adaptive boosting. In addition, a weighted-average voting (WAV) ensemble model was constructed using the ensemble-voting technique to predict clinical failure after ACLR. Concordance (area under the receiver operating characteristic curve [AUC]), calibration, and decision curve analysis were used to evaluate predictive performances of the 5 models.

RESULTS

Clinical failure occurred in 73 of the 432 patients (16.9%). The 8 most important predictors for clinical failure were follow-up period, high-grade preoperative knee laxity, time from injury to ACLR, participation in competitive sports, posterior tibial slope, graft diameter, age at surgery, and medial meniscus resection. The WAV ensemble algorithm achieved the best predictive performance based on concordance (AUC, 0.9139), calibration (calibration intercept, -0.1806; calibration slope, 1.2794; Brier score, 0.0888), and decision curve analysis (greatest net benefits) and was used to develop an web-based application to predict a patient's clinical failure risk of ACLR.

CONCLUSION

The WAV ensemble algorithm was able to accurately predict patient-specific risk of clinical failure after ACLR. Clinicians and patients can use the web-based application during preoperative consultation to understand individual prediction outcomes.

摘要

背景

前交叉韧带重建(ACLR)术后特定患者的临床失败风险概况对于术前手术规划和术后康复指导具有重要意义。

目的

创建一种集成算法机器学习(ML)模型和基于ML的网络工具,以预测ACLR术后特定患者的临床失败风险。

研究设计

队列研究;证据等级,3级。

方法

纳入2010年1月至2019年2月期间接受自体腘绳肌腱解剖双束ACLR的432例患者(平均年龄26.8±8.4岁;74.1%为男性)。主要结局是至少2年随访时临床失败的概率。作者纳入24个独立变量进行特征选择和模型开发。数据集随机分为训练集(75%)和测试集(25%)。使用4种ML算法构建模型:极端梯度提升、随机森林、轻梯度提升机和自适应提升。此外,采用集成投票技术构建加权平均投票(WAV)集成模型,以预测ACLR术后的临床失败情况。采用一致性(受试者操作特征曲线下面积[AUC])、校准和决策曲线分析来评估5种模型的预测性能。

结果

432例患者中有73例(16.9%)发生临床失败。临床失败的8个最重要预测因素为随访时间、术前膝关节高度松弛、受伤至ACLR的时间、参加竞技运动、胫骨后倾、移植物直径、手术年龄和内侧半月板切除术。基于一致性(AUC,0.9139)、校准(校准截距,-0.1806;校准斜率,1.2794;Brier评分,0.0888)和决策曲线分析(最大净效益),WAV集成算法实现了最佳预测性能,并用于开发一个基于网络的应用程序,以预测患者ACLR的临床失败风险。

结论

WAV集成算法能够准确预测ACLR术后特定患者的临床失败风险。临床医生和患者可在术前咨询时使用基于网络的应用程序,以了解个体预测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98a3/11334255/d195a429a668/10.1177_23259671241261695-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验