Lima-Téllez T, Hinojosa J F, Hernández-López I, Moreno S
Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora (UNISON), Blvd. Rosales y Luis Encinas, Hermosillo, CP 83000, Sonora, Mexico.
Departamento de Metal-Mecánica, Tecnológico Nacional de México/Instituto Tecnológico de Hermosillo, Av. Tecnológico 115, Hermosillo, CP 83170, Sonora, Mexico.
Heliyon. 2024 Jul 30;10(15):e35413. doi: 10.1016/j.heliyon.2024.e35413. eCollection 2024 Aug 15.
The present numerical study reports the performance of a cooling system for solar photovoltaic panels (PV) using different nanofluids (AlO, CuO, and ZnO). A novel parallel flow channel with strategically placed baffles was analyzed to improve the heat transfer between the back of PV and the nanofluid. The nanoparticles' Brownian motion and the nanofluid temperature effect were considered. Computational fluid dynamics was used to simulate the interaction between the fluid in motion and panel materials. Various nanoparticle concentrations, Reynolds numbers (18-1800), and solar radiation values (200-1000 W/m) were examined. The results showed that the nanofluid composed of CuO was the most effective, improving thermal efficiency by 5.67 % compared to pure water in the lowest Re range. A 10 % vol. concentration of AlO reduced temperature by up to 15 % and increased electrical efficiency by 4 % when the Re varied from 18 to 42. However, increasing the Re number and having low solar radiation values decreased the contribution of the nanofluid. Additionally, using baffles in the flow channel improved electrical efficiency by 2 %.
本数值研究报告了使用不同纳米流体(AlO、CuO和ZnO)的太阳能光伏板(PV)冷却系统的性能。分析了一种带有精心布置折流板的新型平行流道,以改善光伏板背面与纳米流体之间的热传递。考虑了纳米颗粒的布朗运动和纳米流体温度效应。采用计算流体动力学来模拟流动流体与板材料之间的相互作用。研究了各种纳米颗粒浓度、雷诺数(18 - 1800)和太阳辐射值(200 - 1000 W/m)。结果表明,在最低雷诺数范围内,由CuO组成的纳米流体最有效,与纯水相比,热效率提高了5.67%。当雷诺数从18变化到42时,10%体积浓度的AlO可使温度降低高达15%,并使电效率提高4%。然而,增加雷诺数和降低太阳辐射值会降低纳米流体的贡献。此外,在流道中使用折流板可使电效率提高2%。