Mai Chunliang, Zhang Lixin, Hu Xue
College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, 832003, China.
Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, 832003, China.
Heliyon. 2024 Jul 27;10(15):e35382. doi: 10.1016/j.heliyon.2024.e35382. eCollection 2024 Aug 15.
Accurate parameter identification of photovoltaic (PV) models is essential for the optimal operation and control of PV systems. However, PV cell modeling exhibits nonlinearity and involves numerous challenging-to-solve unknown parameters, thereby reducing the utilization efficiency of solar energy in PV systems. Therefore, this paper proposes an enhanced Snake algorithm (ISASO) that integrates Subtraction Average-Based Optimization (SABO) to address the shortcomings of traditional PV model parameter identification methods, such as low accuracy, slow convergence, and susceptibility to local optima. The SABO algorithm, which updates the positions of search agents using a consistent arithmetic mean position throughout the optimization process, demonstrates high convergence. By integrating SABO's global search strategy into the exploration phase of SO, the global search capability of SO is further enhanced, mitigating the risk of early local optima in the original SO. Additionally, the Tent chaotic map initialization method is incorporated into standard SO to improve the quality of the initial population and enhance population diversity. A dynamic learning factor and adaptive inertia weight strategy are also employed to accelerate the convergence speed of the SO algorithm, balancing its exploration and exploitation capabilities. To validate the performance of ISASO, it is applied to the CEC2005 benchmark functions and employed to identify the optimal parameters of various PV models. Statistical and analytical results reveal that ISASO markedly outperforms existing methods in parameter identification accuracy and reliability, achieving the lowest Root Mean Square Error (RMSE) values between standard and simulated data. Additionally, the superior performance of ISASO is further verified by comparative analysis with existing meta-heuristic algorithms and the Friedman mean ranking statistical method. Therefore, ISASO can be considered as a reliable and effective method to accurately estimate solar PV model parameters.
光伏(PV)模型的准确参数识别对于光伏系统的优化运行和控制至关重要。然而,光伏电池建模具有非线性,且涉及众多难以求解的未知参数,从而降低了光伏系统中太阳能的利用效率。因此,本文提出一种增强型蛇形算法(ISASO),该算法集成了基于减法平均的优化(SABO),以解决传统光伏模型参数识别方法存在的精度低、收敛速度慢和易陷入局部最优等缺点。SABO算法在整个优化过程中使用一致的算术平均位置来更新搜索代理的位置,具有较高的收敛性。通过将SABO的全局搜索策略集成到蛇形算法(SO)的探索阶段,进一步增强了SO的全局搜索能力,降低了原始SO中过早陷入局部最优的风险。此外,将帐篷混沌映射初始化方法纳入标准SO,以提高初始种群的质量并增强种群多样性。还采用了动态学习因子和自适应惯性权重策略来加速SO算法的收敛速度,平衡其探索和利用能力。为了验证ISASO的性能,将其应用于CEC2005基准函数,并用于识别各种光伏模型的最优参数。统计和分析结果表明,ISASO在参数识别精度和可靠性方面明显优于现有方法,在标准数据和模拟数据之间实现了最低的均方根误差(RMSE)值。此外,通过与现有元启发式算法和弗里德曼平均排名统计方法的对比分析,进一步验证了ISASO的优越性能。因此,ISASO可被视为一种准确估计太阳能光伏模型参数的可靠有效方法。