Suppr超能文献

基于新型增强型草原犬鼠优化算法的光伏模型高效参数提取

Efficient parameter extraction of photovoltaic models with a novel enhanced prairie dog optimization algorithm.

作者信息

Izci Davut, Ekinci Serdar, Hussien Abdelazim G

机构信息

Department of Computer Engineering, Batman University, Batman, 72100, Turkey.

MEU Research Unit, Middle East University, Amman, Jordan.

出版信息

Sci Rep. 2024 Apr 4;14(1):7945. doi: 10.1038/s41598-024-58503-y.

Abstract

The growing demand for solar energy conversion underscores the need for precise parameter extraction methods in photovoltaic (PV) plants. This study focuses on enhancing accuracy in PV system parameter extraction, essential for optimizing PV models under diverse environmental conditions. Utilizing primary PV models (single diode, double diode, and three diode) and PV module models, the research emphasizes the importance of accurate parameter identification. In response to the limitations of existing metaheuristic algorithms, the study introduces the enhanced prairie dog optimizer (En-PDO). This novel algorithm integrates the strengths of the prairie dog optimizer (PDO) with random learning and logarithmic spiral search mechanisms. Evaluation against the PDO, and a comprehensive comparison with eighteen recent algorithms, spanning diverse optimization techniques, highlight En-PDO's exceptional performance across different solar cell models and CEC2020 functions. Application of En-PDO to single diode, double diode, three diode, and PV module models, using experimental datasets (R.T.C. France silicon and Photowatt-PWP201 solar cells) and CEC2020 test functions, demonstrates its consistent superiority. En-PDO achieves competitive or superior root mean square error values, showcasing its efficacy in accurately modeling the behavior of diverse solar cells and performing optimally on CEC2020 test functions. These findings position En-PDO as a robust and reliable approach for precise parameter estimation in solar cell models, emphasizing its potential and advancements compared to existing algorithms.

摘要

对太阳能转换的需求不断增长,凸显了光伏(PV)电站中精确参数提取方法的必要性。本研究聚焦于提高光伏系统参数提取的准确性,这对于在不同环境条件下优化光伏模型至关重要。该研究利用主要的光伏模型(单二极管、双二极管和三二极管)以及光伏模块模型,强调了准确参数识别的重要性。针对现有元启发式算法的局限性,该研究引入了增强型草原犬鼠优化器(En-PDO)。这种新颖的算法将草原犬鼠优化器(PDO)的优势与随机学习和对数螺旋搜索机制相结合。与PDO进行评估,并与涵盖不同优化技术的十八种最新算法进行全面比较,突出了En-PDO在不同太阳能电池模型和CEC2020函数上的卓越性能。将En-PDO应用于单二极管、双二极管、三二极管和光伏模块模型,使用实验数据集(法国R.T.C.硅和Photowatt-PWP201太阳能电池)以及CEC2020测试函数,证明了其始终如一的优越性。En-PDO实现了具有竞争力或更优的均方根误差值,展示了其在精确建模各种太阳能电池行为以及在CEC2020测试函数上实现最优性能方面的功效。这些发现将En-PDO定位为太阳能电池模型精确参数估计的一种强大且可靠的方法,强调了其与现有算法相比的潜力和进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b087/10995185/f4eaa14dfc97/41598_2024_58503_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验