Suppr超能文献

使用大语言模型进行提示工程以协助医疗服务提供者回应患者咨询:电子健康记录中的实时实施

Prompt engineering with a large language model to assist providers in responding to patient inquiries: a real-time implementation in the electronic health record.

作者信息

Afshar Majid, Gao Yanjun, Wills Graham, Wang Jason, Churpek Matthew M, Westenberger Christa J, Kunstman David T, Gordon Joel E, Goswami Cherodeep, Liao Frank J, Patterson Brian

机构信息

Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States.

Information Systems and Informatics, University of Wisconsin Health System, Madison, WI 53792, United States.

出版信息

JAMIA Open. 2024 Aug 20;7(3):ooae080. doi: 10.1093/jamiaopen/ooae080. eCollection 2024 Oct.

Abstract

BACKGROUND

Large language models (LLMs) can assist providers in drafting responses to patient inquiries. We examined a prompt engineering strategy to draft responses for providers in the electronic health record. The aim was to evaluate the change in usability after prompt engineering.

MATERIALS AND METHODS

A pre-post study over 8 months was conducted across 27 providers. The primary outcome was the provider use of LLM-generated messages from Generative Pre-Trained Transformer 4 (GPT-4) in a mixed-effects model, and the secondary outcome was provider sentiment analysis.

RESULTS

Of the 7605 messages generated, 17.5% ( = 1327) were used. There was a reduction in negative sentiment with an odds ratio of 0.43 (95% CI, 0.36-0.52), but message use decreased ( < .01). The addition of nurses after the study period led to an increase in message use to 35.8% ( < .01).

DISCUSSION

The improvement in sentiment with prompt engineering suggests better content quality, but the initial decrease in usage highlights the need for integration with human factors design.

CONCLUSION

Future studies should explore strategies for optimizing the integration of LLMs into the provider workflow to maximize both usability and effectiveness.

摘要

背景

大语言模型(LLMs)可以帮助医疗服务提供者起草对患者询问的回复。我们研究了一种提示工程策略,以在电子健康记录中为医疗服务提供者起草回复。目的是评估提示工程后可用性的变化。

材料与方法

对27名医疗服务提供者进行了为期8个月的前后对照研究。主要结果是在混合效应模型中医疗服务提供者使用来自生成式预训练变换器4(GPT-4)的大语言模型生成的消息,次要结果是医疗服务提供者的情感分析。

结果

在生成的7605条消息中,17.5%(n = 1327)被使用。负面情绪有所减少,优势比为0.43(95%置信区间,0.36 - 0.52),但消息使用率下降(P <.01)。研究期后增加护士导致消息使用率提高到35.8%(P <.01)。

讨论

提示工程带来的情感改善表明内容质量更好,但最初的使用率下降凸显了与人为因素设计相结合的必要性。

结论

未来的研究应探索优化大语言模型融入医疗服务提供者工作流程的策略,以最大限度地提高可用性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e96f/11335368/34dfadf845d0/ooae080f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验