Xiao Jiaying, Wang Chun, Xu Gongjun
University of Washington, WA, USA.
University of Michigan, MI, USA.
Appl Psychol Meas. 2024 Sep;48(6):276-294. doi: 10.1177/01466216241265757. Epub 2024 Jul 24.
Accurate item parameters and standard errors (SEs) are crucial for many multidimensional item response theory (MIRT) applications. A recent study proposed the Gaussian Variational Expectation Maximization (GVEM) algorithm to improve computational efficiency and estimation accuracy (Cho et al., 2021). However, the SE estimation procedure has yet to be fully addressed. To tackle this issue, the present study proposed an updated supplemented expectation maximization (USEM) method and a bootstrap method for SE estimation. These two methods were compared in terms of SE recovery accuracy. The simulation results demonstrated that the GVEM algorithm with bootstrap and item priors (GVEM-BSP) outperformed the other methods, exhibiting less bias and relative bias for SE estimates under most conditions. Although the GVEM with USEM (GVEM-USEM) was the most computationally efficient method, it yielded an upward bias for SE estimates.
准确的项目参数和标准误差(SEs)对于许多多维项目反应理论(MIRT)应用至关重要。最近的一项研究提出了高斯变分期望最大化(GVEM)算法,以提高计算效率和估计精度(Cho等人,2021年)。然而,SE估计程序尚未得到充分解决。为了解决这个问题,本研究提出了一种更新的补充期望最大化(USEM)方法和一种用于SE估计的自助法。对这两种方法在SE恢复精度方面进行了比较。模拟结果表明,带有自助法和项目先验的GVEM算法(GVEM-BSP)优于其他方法,在大多数情况下,SE估计的偏差和相对偏差较小。尽管带有USEM的GVEM(GVEM-USEM)是计算效率最高的方法,但它在SE估计上产生了向上的偏差。