Suppr超能文献

关于使用高斯变分估计的多维双参数逻辑模型标准误差的说明

A Note on Standard Errors for Multidimensional Two-Parameter Logistic Models Using Gaussian Variational Estimation.

作者信息

Xiao Jiaying, Wang Chun, Xu Gongjun

机构信息

University of Washington, WA, USA.

University of Michigan, MI, USA.

出版信息

Appl Psychol Meas. 2024 Sep;48(6):276-294. doi: 10.1177/01466216241265757. Epub 2024 Jul 24.

Abstract

Accurate item parameters and standard errors (SEs) are crucial for many multidimensional item response theory (MIRT) applications. A recent study proposed the Gaussian Variational Expectation Maximization (GVEM) algorithm to improve computational efficiency and estimation accuracy (Cho et al., 2021). However, the SE estimation procedure has yet to be fully addressed. To tackle this issue, the present study proposed an updated supplemented expectation maximization (USEM) method and a bootstrap method for SE estimation. These two methods were compared in terms of SE recovery accuracy. The simulation results demonstrated that the GVEM algorithm with bootstrap and item priors (GVEM-BSP) outperformed the other methods, exhibiting less bias and relative bias for SE estimates under most conditions. Although the GVEM with USEM (GVEM-USEM) was the most computationally efficient method, it yielded an upward bias for SE estimates.

摘要

准确的项目参数和标准误差(SEs)对于许多多维项目反应理论(MIRT)应用至关重要。最近的一项研究提出了高斯变分期望最大化(GVEM)算法,以提高计算效率和估计精度(Cho等人,2021年)。然而,SE估计程序尚未得到充分解决。为了解决这个问题,本研究提出了一种更新的补充期望最大化(USEM)方法和一种用于SE估计的自助法。对这两种方法在SE恢复精度方面进行了比较。模拟结果表明,带有自助法和项目先验的GVEM算法(GVEM-BSP)优于其他方法,在大多数情况下,SE估计的偏差和相对偏差较小。尽管带有USEM的GVEM(GVEM-USEM)是计算效率最高的方法,但它在SE估计上产生了向上的偏差。

相似文献

9
Gaussian variational estimation for multidimensional item response theory.多维项目反应理论的高斯变分估计。
Br J Math Stat Psychol. 2021 Jul;74 Suppl 1:52-85. doi: 10.1111/bmsp.12219. Epub 2020 Oct 16.

本文引用的文献

3
Gaussian variational estimation for multidimensional item response theory.多维项目反应理论的高斯变分估计。
Br J Math Stat Psychol. 2021 Jul;74 Suppl 1:52-85. doi: 10.1111/bmsp.12219. Epub 2020 Oct 16.
4
A Note on the Conversion of Item Parameters Standard Errors.关于项目参数标准误转换的注释。
Multivariate Behav Res. 2019 Mar-Apr;54(2):307-321. doi: 10.1080/00273171.2018.1513829. Epub 2018 Dec 21.
7
Profile-likelihood Confidence Intervals in Item Response Theory Models.项目反应理论模型中的似然轮廓置信区间。
Multivariate Behav Res. 2017 Sep-Oct;52(5):533-550. doi: 10.1080/00273171.2017.1329082. Epub 2017 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验