Suppr超能文献

靶向 I 通道 PKA 磷酸化轴以恢复其在高风险 LQT1 变异体中的功能。

Targeting the I Channel PKA Phosphorylation Axis to Restore Its Function in High-Risk LQT1 Variants.

机构信息

Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.).

Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.).

出版信息

Circ Res. 2024 Sep 13;135(7):722-738. doi: 10.1161/CIRCRESAHA.124.325009. Epub 2024 Aug 21.

Abstract

BACKGROUND

The KCNQ1+KCNE1 (I) potassium channel plays a crucial role in cardiac adaptation to stress, in which β-adrenergic stimulation phosphorylates the I channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between I channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear.

METHODS

Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/I channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions.

RESULTS

By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of I channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of I. We refer to this pattern as the I channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the I channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities.

CONCLUSIONS

Our findings not only elucidate the molecular mechanism of PKA-dependent I channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.

摘要

背景

KCNQ1+KCNE1(I)钾通道在心脏对应激的适应中起着至关重要的作用,其中β-肾上腺素能刺激通过环磷酸腺苷(cAMP)/蛋白激酶 A(PKA)途径使 I 通道磷酸化。磷酸化增加通道电流并加速复极化,以适应心率增加。KCNQ1 的变体可导致长 QT 综合征 1 型(LQT1),而那些具有缺陷 cAMP 作用的变体使患者面临心脏骤停和猝死的最高风险。然而,I 通道磷酸化与通道功能之间的分子联系,以及为什么高风险 LQT1 突变失去 cAMP 敏感性,仍然不清楚。

方法

利用常规膜片钳和电压钳荧光技术记录野生型和突变型 KCNQ1/I 通道的孔开放和电压传感器运动。分析每个 LQT1 突变的临床表型外显率作为评估其临床风险的指标。使用患者特异性诱导多能干细胞模型在生理条件下测试机制发现。

结果

通过系统阐明一系列缺乏 cAMP 敏感性的 LQT1 变体的机制,我们确定了 I 通道磷酸化调节的分子决定因素。这些关键残基分布在 KCNQ1 的 N 端,延伸到 I 的中央孔区。我们将这种模式称为 I 通道 PKA 磷酸化轴。接下来,通过检查来自包含 10579 名 LQT1 携带者的临床数据库的 LQT1 变体,我们发现最具高外显率的 LQT1 变体的分布延伸到 I 通道 PKA 磷酸化轴,证明了其临床相关性。此外,我们发现一种小分子 ML277,它结合在磷酸化轴的中心,可以挽救多种高风险 LQT1 变体的缺陷 cAMP 作用。这一发现随后在高风险患者特异性诱导多能干细胞衍生的心肌细胞中进行了测试,其中 ML277 显著缓解了心律失常。

结论

我们的研究结果不仅阐明了 PKA 依赖性 I 通道磷酸化的分子机制,还为高风险 LQT1 变体患者提供了一种有效的抗心律失常策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab0/11392204/8dbc59f71ec0/res-135-722-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验