Suppr超能文献

在阿斯利康(AstraZeneca),关于使用机器学习进行 ADME 预测的观点。

Perspectives on the use of machine learning for ADME prediction at AstraZeneca.

机构信息

Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.

Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Waltham, MA, USA.

出版信息

Xenobiotica. 2024 Jul;54(7):368-378. doi: 10.1080/00498254.2024.2352598. Epub 2024 Aug 21.

Abstract

A drug's pharmacokinetic (PK) profile will determine its dose and the frequency of administration as well as the likelihood of observing any adverse drug reactions.It is important to understand these PK properties as early as possible in the drug discovery process, ideally, to accurately predict these prior to synthesising the molecule leading to significant improvements in efficiency.In this paper, we describe the approaches used within AstraZeneca to improve our ability of predicting the preclinical and human pharmacokinetic profiles of novel molecules using machine learning and artificial intelligence.We will show how combining chemical structure-based approaches with experimentally derived properties enables improved predictions of pharmacokinetics and can be extended to molecules that go beyond the classical Lipinski's rule-of-five space.We will also discuss how combining these and predictive models could ultimately improve our ability to predict the human outcome at the point of chemical design.

摘要

药物的药代动力学(PK)特征将决定其剂量和给药频率,以及观察到任何药物不良反应的可能性。在药物发现过程中尽早了解这些 PK 特性非常重要,理想情况下,在合成分子之前就能准确预测这些特性,从而显著提高效率。在本文中,我们描述了阿斯利康(AstraZeneca)内部用于提高我们使用机器学习和人工智能预测新型分子的临床前和人体药代动力学特征的能力的方法。我们将展示如何将基于化学结构的方法与实验得出的特性相结合,从而提高药代动力学的预测能力,并将其扩展到超出经典 Lipinski 五规则空间的分子。我们还将讨论如何结合这些预测模型,最终提高我们在化学设计点预测人体结果的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验