Suppr超能文献

有序预测模型中具有最佳精度的假设检验。

Hypothesis tests in ordinal predictive models with optimal accuracy.

机构信息

Shanghai Zhangjiang Institute of Mathematics, Shanghai, 201203, China.

Department of Statistics, School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae079.

Abstract

In real-world applications involving multi-class ordinal discrimination, a common approach is to aggregate multiple predictive variables into a linear combination, aiming to develop a classifier with high prediction accuracy. Assessment of such multi-class classifiers often utilizes the hypervolume under ROC manifolds (HUM). When dealing with a substantial pool of potential predictors and achieving optimal HUM, it becomes imperative to conduct appropriate statistical inference. However, prevalent methodologies in existing literature are computationally expensive. We propose to use the jackknife empirical likelihood method to address this issue. The Wilks' theorem under moderate conditions is established and the power analysis under the Pitman alternative is provided. We also introduce a novel network-based rapid computation algorithm specifically designed for computing a general multi-sample $U$-statistic in our test procedure. To compare our approach against existing approaches, we conduct extensive simulations. Results demonstrate the superior performance of our method in terms of test size, power, and implementation time. Furthermore, we apply our method to analyze a real medical dataset and obtain some new findings.

摘要

在涉及多类有序判别分析的实际应用中,一种常见的方法是将多个预测变量聚合到一个线性组合中,旨在开发具有高预测准确性的分类器。此类多类分类器的评估通常利用 ROC 流形下的超体积(HUM)。在处理大量潜在预测器并实现最优 HUM 时,必须进行适当的统计推断。然而,现有文献中的常见方法计算成本高昂。我们建议使用刀切经验似然方法来解决这个问题。在中等条件下建立了威尔克斯定理,并提供了皮特曼替代下的功效分析。我们还引入了一种新的基于网络的快速计算算法,专门用于在我们的测试过程中计算一般的多样本 U-统计量。为了将我们的方法与现有方法进行比较,我们进行了广泛的模拟。结果表明,我们的方法在检验大小、功效和实现时间方面具有优越的性能。此外,我们将我们的方法应用于分析一个真实的医学数据集,并获得了一些新的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验