Suppr超能文献

基于神经网络的乳腺癌预后和治疗预测评分系统。

A Neural Network-Based Scoring System for Predicting Prognosis and Therapy in Breast Cancer.

机构信息

MOE Frontier Science Center for Precision Oncology, Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.

Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.

出版信息

Curr Protoc. 2024 Aug;4(8):e1122. doi: 10.1002/cpz1.1122.

Abstract

Breast cancer is a prevalent malignancy affecting women worldwide. Currently, there are no precise molecular biomarkers with immense potential for accurately predicting breast cancer development, which limits clinical management options. Recent evidence has highlighted the importance of metastatic and tumor-infiltrating immune cells in modulating the antitumor therapy response. However, the prognostic value of using these features in combination, and their potential for guiding individualized treatment for breast cancer, remains vague. To address this challenge, we recently developed the metastatic and immunogenomic risk score (MIRS), a comprehensive and user-friendly scoring system that leverages advanced bioinformatics methods to facilitate transcriptomics data analysis. To help users become familiar with the MIRS tool and apply it effectively in analyzing new breast cancer datasets, we describe detailed protocols that require no advanced programming skills. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Calculating a MIRS score from transcriptomics data Basic Protocol 2: Predicting clinical outcomes from MIRS scores Basic Protocol 3: Evaluating treatment responses and guiding therapeutic strategies in breast cancer patients Basic Protocol 4: Guidelines for utilizing the MIRS webtool.

摘要

乳腺癌是一种常见的恶性肿瘤,影响着全世界的女性。目前,没有具有巨大潜力的精确分子生物标志物可以准确预测乳腺癌的发展,这限制了临床管理的选择。最近的证据强调了转移性和肿瘤浸润免疫细胞在调节抗肿瘤治疗反应中的重要性。然而,使用这些特征组合的预后价值及其在指导乳腺癌个体化治疗方面的潜力仍然不明确。为了解决这一挑战,我们最近开发了转移性和免疫基因组风险评分(MIRS),这是一种综合且用户友好的评分系统,利用先进的生物信息学方法来促进转录组数据分析。为了帮助用户熟悉 MIRS 工具并有效地将其应用于分析新的乳腺癌数据集,我们描述了详细的协议,这些协议不需要先进的编程技能。© 2024 Wiley Periodicals LLC. 基本方案 1:从转录组数据计算 MIRS 评分 基本方案 2:从 MIRS 评分预测临床结局 基本方案 3:评估乳腺癌患者的治疗反应并指导治疗策略 基本方案 4:使用 MIRS 网络工具的指南

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验