Suppr超能文献

基于机器学习辅助的 Eu(III)-功能化金属有机框架的传感器平台,用于多种农药的精确和可视化识别。

Machine Learning-Assisted Eu(III)-Functionalized HOF-on-HOF Composite-Based Sensor Platform for Precise and Visual Identification of Multiple Pesticides.

机构信息

School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.

出版信息

Anal Chem. 2024 Sep 3;96(35):14248-14256. doi: 10.1021/acs.analchem.4c02913. Epub 2024 Aug 21.

Abstract

Precise and rapid identification of pesticides is crucial to ensure a green environment, food safety, and human health. However, complex sample environments often hinder precise identification, especially for simultaneous differentiation of multiple pesticides. Herein, we first synthesize a Eu(III)-functionalized HOF-on-HOF composite (Eu@PFC-1@MA-TPA) and then utilize principal component analysis (PCA) and a machine learning (ML) algorithm to achieve simultaneous identification of the pesticides 2,6-dichloro-4-nitroaniline (DCN) and thiabendazole (TBZ) and their mixtures. Eu@PFC-1@MA-TPA displays high quantitative identification ability, which can distinguish single DCN and TBZ as low as 1 μM and their mixtures at 5 μM through PCA. In addition, the hydrogel film Eu@PFC-1@MA-TPA/AG is fabricated to monitor DCN and TBZ in drinking water, tap water, river water, and apple juice with high sensitivity. Furthermore, based on the obvious fluorescence color variance of pesticides, Eu@PFC-1@MA-TPA/AG achieves visual and in situ imaging detection of single DCN and TBZ and their mixtures. More importantly, we construct an intelligent artificial vision platform integrating Eu@PFC-1@MA-TPA/AG with a DenseNet algorithm, which can identify the concentrations and types of DCN and TBZ and their mixtures within 1 s with over 98% accuracy. This work develops a precise and rapid analysis method for simultaneous identification of multiple pesticides through combining a visualized fluorescence sensor and an ML algorithm.

摘要

精确、快速地识别农药对于确保绿色环境、食品安全和人类健康至关重要。然而,复杂的样品环境往往会阻碍精确识别,尤其是对于多种农药的同时区分。在此,我们首先合成了一种 Eu(III)-功能化的 HOF-on-HOF 复合材料(Eu@PFC-1@MA-TPA),然后利用主成分分析(PCA)和机器学习(ML)算法实现了对农药 2,6-二氯-4-硝基苯胺(DCN)和噻菌灵(TBZ)及其混合物的同时识别。Eu@PFC-1@MA-TPA 表现出高定量识别能力,通过 PCA 可以区分单一的 DCN 和 TBZ,其浓度低至 1 μM,混合物的浓度低至 5 μM。此外,制备了水凝胶薄膜 Eu@PFC-1@MA-TPA/AG,用于对饮用水、自来水、河水和苹果汁中的 DCN 和 TBZ 进行高灵敏度监测。此外,基于农药明显的荧光颜色变化,Eu@PFC-1@MA-TPA/AG 实现了对单一 DCN 和 TBZ 及其混合物的可视化和原位成像检测。更重要的是,我们构建了一个智能人工视觉平台,将 Eu@PFC-1@MA-TPA/AG 与 DenseNet 算法集成,可以在 1 s 内以超过 98%的准确率识别 DCN 和 TBZ 及其混合物的浓度和类型。这项工作通过结合可视化荧光传感器和 ML 算法,开发了一种用于同时识别多种农药的精确、快速分析方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验