Suppr超能文献

核变形和迁移细胞在 3D 限制中的动力学揭示了拉力和推力的适应。

Nuclear deformation and dynamics of migrating cells in 3D confinement reveal adaptation of pulling and pushing forces.

机构信息

Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany.

Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-University Munich, Theresienstraße 37, D-80333 Munich, Germany.

出版信息

Sci Adv. 2024 Aug 23;10(34):eadm9195. doi: 10.1126/sciadv.adm9195. Epub 2024 Aug 21.

Abstract

Eukaryotic cells show an astounding ability to remodel their shape and cytoskeleton and to migrate through pores and constrictions smaller than their nuclear diameter. However, the relation of nuclear deformation and migration dynamics in confinement remains unclear. Here, we study the mechanics and dynamics of mesenchymal cancer cell nuclei transitioning through three-dimensional compliant hydrogel channels. We find a biphasic dependence of migration speed and transition frequency on channel width, peaking at widths comparable to the nuclear diameter. Using confocal imaging and hydrogel bead displacement, we determine nuclear deformations and corresponding forces during confined migration. The nucleus deforms reversibly with a reduction in volume during confinement. With decreasing channel width, the nuclear shape during transmigration changes biphasically, concomitant with the transitioning dynamics. Our proposed physical model explains the observed nuclear shapes and transitioning dynamics in terms of the cytoskeletal force generation adapting from purely pulling-based to a combined pulling- and pushing-based mechanism with increasing nuclear confinement.

摘要

真核细胞具有令人惊叹的重塑其形状和细胞骨架的能力,并能够通过比核直径小的孔和狭窄部位迁移。然而,核变形与受限迁移动力学之间的关系尚不清楚。在这里,我们研究了间质癌细胞核通过三维顺应性水凝胶通道的力学和动力学。我们发现迁移速度和转变频率与通道宽度呈双相依赖性,在与核直径相当的宽度处达到峰值。使用共聚焦成像和水凝胶珠位移,我们确定了受限迁移过程中的核变形和相应的力。核在受限时会发生可逆的体积减小。随着通道宽度的减小,核在穿越时的形状会发生双相变化,与转变动力学相伴随。我们提出的物理模型根据细胞骨架力的产生,从纯粹的拉伸机制到与核约束增加相关的拉伸和推动相结合的机制,解释了观察到的核形状和转变动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbbc/11338266/b5bd1ef222d0/sciadv.adm9195-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验