Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
Department of Pharmaceutical Chemistry, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States.
J Am Chem Soc. 2024 Sep 4;146(35):24537-24552. doi: 10.1021/jacs.4c07686. Epub 2024 Aug 21.
The envelope (E) protein of SARS-CoV-2 is the smallest of the three structural membrane proteins of the virus. E mediates budding of the progeny virus in the endoplasmic reticulum Golgi intermediate compartment of the cell. It also conducts ions, and this channel activity is associated with the pathogenicity of SARS-CoV-2. The structural basis for these functions is still poorly understood. Biochemical studies of E in detergent micelles found a variety of oligomeric states, but recent F solid-state NMR data indicated that the transmembrane domain (ETM, residues 8-38) forms pentamers in lipid bilayers. Hexamethylene amiloride (HMA), an E inhibitor, binds the pentameric ETM at the lipid-exposed helix-helix interface. Here, we investigate the oligomeric structure and drug interaction of an ectodomain-containing E construct, ENTM (residues 1-41). Unexpectedly, F spin diffusion NMR data reveal that ENTM adopts an average oligomeric state of dimers instead of pentamers in lipid bilayers. A new amiloride inhibitor, AV-352, shows stronger inhibitory activity than HMA in virus-like particle assays. Distance measurements between C-labeled protein and a trifluoromethyl group of AV-352 indicate that the drug binds ENTM with a higher stoichiometry than ETM. We measured protein-drug contacts using a sensitivity-enhanced two-dimensional C-F distance NMR technique. The results indicate that AV-352 binds the C-terminal half of the TM domain, similar to the binding region of HMA. These data provide evidence for the existence of multiple oligomeric states of E in lipid bilayers, which may carry out distinct functions and may be differentially targeted by antiviral drugs.
SARS-CoV-2 的包膜 (E) 蛋白是病毒三种结构膜蛋白中最小的一种。E 介导病毒在内质网高尔基体中间隔室中的出芽。它还传导离子,这种通道活性与 SARS-CoV-2 的致病性有关。这些功能的结构基础仍知之甚少。在去污剂胶束中的 E 的生化研究发现了多种寡聚状态,但最近的 F 固态 NMR 数据表明跨膜结构域(ETM,残基 8-38)在脂质双层中形成五聚体。六亚甲基阿米洛利(HMA),一种 E 抑制剂,在五聚体 ETM 处结合暴露于脂质的螺旋-螺旋界面。在这里,我们研究了含有外域的 E 构建体 ENTM(残基 1-41)的寡聚结构和药物相互作用。出乎意料的是,F 自旋扩散 NMR 数据显示,在脂质双层中,ENTM 采用平均二聚体寡聚状态而不是五聚体。一种新的阿米洛利抑制剂 AV-352 在病毒样颗粒测定中显示出比 HMA 更强的抑制活性。用 C 标记的蛋白质与 AV-352 的三氟甲基之间的距离测量表明,该药物与 ENTM 的结合比 ETM 具有更高的化学计量。我们使用增强灵敏度的二维 C-F 距离 NMR 技术测量了蛋白质-药物接触。结果表明,AV-352 结合 TM 结构域的 C 端半部分,类似于 HMA 的结合区域。这些数据为 E 在脂质双层中存在多种寡聚状态提供了证据,这些状态可能执行不同的功能,并且可能被抗病毒药物以不同的方式靶向。