College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China.
College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China.
Bioorg Med Chem. 2024 Oct 1;112:117878. doi: 10.1016/j.bmc.2024.117878. Epub 2024 Aug 16.
Chemical RNA modification has emerged as a flexible approach for post-synthetic modifications in chemical biology research. Guide RNA (gRNA) plays a crucial role in the clustered regularly interspaced short palindromic repeats and associated protein system (CRISPR-Cas). Several toolkits have been developed to regulate gene expression and editing through modifications of gRNA. However, conditional regulation strategies to control gene editing in cells as required are still lacking. In this context, we introduce a strategy employing a cyclic disulfide-substituted acylating agent to randomly acylate the 2'-OH group on the gRNA strand. The CRISPR-Cas systems demonstrate off-on transformation activity driven by redox-triggered disulfide cleavage and undergo intramolecular cyclization, which releases the functionalized gRNA. Dithiothreitol (DTT) exhibits superior reductive capabilities in cleaving disulfides compared to glutathione (GSH), requiring fewer reductants. This acylation method with cyclic disulfides enables conditional control of CRISPR-Cas9, CRISPR-Cas13a, RNA hybridization, and aptamer folding. Our strategy facilitates precise in vivo control of gene editing, making it particularly valuable for targeted applications.
化学 RNA 修饰已成为化学生物学研究中用于合成后修饰的一种灵活方法。向导 RNA(gRNA)在成簇规律间隔的短回文重复序列和相关蛋白系统(CRISPR-Cas)中发挥着关键作用。已经开发了几种工具包来通过修饰 gRNA 来调节基因表达和编辑。然而,仍然缺乏所需的用于控制细胞中基因编辑的条件调节策略。在这种情况下,我们引入了一种策略,该策略使用环状二硫代取代的酰化剂随机酰化 gRNA 链上的 2'-OH 基团。CRISPR-Cas 系统表现出由氧化还原触发的二硫键断裂驱动的开-关转换活性,并进行分子内环化,从而释放功能化的 gRNA。二硫苏糖醇(DTT)在裂解二硫键方面比谷胱甘肽(GSH)具有优越的还原能力,需要更少的还原剂。这种带有环状二硫键的酰化方法可实现 CRISPR-Cas9、CRISPR-Cas13a、RNA 杂交和适体折叠的条件控制。我们的策略促进了基因编辑的精确体内控制,使其特别适用于靶向应用。