Suppr超能文献

基于拉普拉斯分布的稀疏贝叶斯学习在稳健的锥束 X 射线发光层析成像中的应用。

SBL-LCGL: sparse Bayesian learning based on Laplace distribution for robust cone-beam x-ray luminescence computed tomography.

机构信息

School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China.

Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.

出版信息

Phys Med Biol. 2024 Aug 30;69(17). doi: 10.1088/1361-6560/ad7223.

Abstract

. To address the quality and accuracy issues in the distribution of nanophosphors (NPs) using Cone-beam x-ray luminescence computed tomography (CB-XLCT) by proposing a novel reconstruction strategy.. This paper introduces a sparse Bayesian learning reconstruction method termed SBL-LCGL, which is grounded in the Lipschitz continuous gradient condition and the Laplace prior to overcome the ill-posed inverse problem inherent in CB-XLCT.. The SBL-LCGL method has demonstrated its effectiveness in capturing the sparse features of NPs and mitigating the computational complexity associated with matrix inversion. Both numerical simulation andexperiments confirm that the method yields satisfactory imaging results regarding the position and shape of the targets.. The advancements presented in this work are expected to enhance the clinical applicability of CB-XLCT, contributing to its broader adoption in medical imaging and diagnostics.

摘要

. 为了解决使用锥形束 X 射线发光计算机断层扫描(CB-XLCT)分布纳米荧光粉(NPs)时的质量和准确性问题,提出了一种新的重建策略。. 本文提出了一种稀疏贝叶斯学习重建方法,称为 SBL-LCGL,它基于 Lipschitz 连续梯度条件和拉普拉斯先验,以克服 CB-XLCT 固有的不适定反问题。. SBL-LCGL 方法在捕捉 NPs 的稀疏特征和减轻与矩阵求逆相关的计算复杂度方面表现出了有效性。数值模拟和实验均证实,该方法在目标的位置和形状的成像结果方面令人满意。. 本工作中的进展有望提高 CB-XLCT 的临床适用性,促进其在医学成像和诊断中的更广泛应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验