Computational Biology and Complex Systems, Department of Physics, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain; Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08005, Barcelona, Spain.
Computational Biology and Complex Systems, Department of Physics, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain.
J Neurosci Methods. 2024 Nov;411:110238. doi: 10.1016/j.jneumeth.2024.110238. Epub 2024 Aug 19.
Ictal stereo-encephalography (sEEG) biomarkers for seizure onset zone (SOZ) localization can be classified depending on whether they target abnormalities in signal power or functional connectivity between signals, and they may depend on the frequency band and time window at which they are estimated.
This work aimed to compare and optimize the performance of a power and a connectivity-based biomarker to identify SOZ contacts from ictal sEEG recordings. To do so, we used a previously introduced power-based measure, the normalized mean activation (nMA), which quantifies the ictal average power activation. Similarly, we defined the normalized mean strength (nMS), to quantify the ictal mean functional connectivity of every contact with the rest. The optimal frequency bands and time windows were selected based on optimizing AUC and F2-score.
The analysis was performed on a dataset of 67 seizures from 10 patients with pharmacoresistant temporal lobe epilepsy. Our results suggest that the power-based biomarker generally performs better for the detection of SOZ than the connectivity-based one. However, an equivalent performance level can be achieved when both biomarkers are independently optimized. Optimal performance was achieved in the beta and lower-gamma range for the power biomarker and in the lower- and higher-gamma range for connectivity, both using a 20 or 30 s period after seizure onset.
The results of this study highlight the importance of this optimization step over frequency and time windows when comparing different SOZ discrimination biomarkers. This information should be considered when training SOZ classifiers on retrospective patients' data for clinical applications.
致痫区(SOZ)定位的发作期立体脑电图(sEEG)生物标志物可根据其针对信号功率异常还是信号间功能连接异常进行分类,而且可能取决于对它们进行估计的频带和时间窗。
本研究旨在比较和优化基于功率和连接的生物标志物的性能,以从发作期 sEEG 记录中识别 SOZ 触点。为此,我们使用了之前介绍的基于功率的度量方法,归一化平均激活(nMA),它量化了发作期平均功率激活。同样,我们定义了归一化平均强度(nMS),以量化每个触点与其余触点的发作期平均功能连接。最佳频带和时间窗是基于 AUC 和 F2 分数优化选择的。
该分析是在 10 名耐药性颞叶癫痫患者的 67 次癫痫发作数据集上进行的。我们的结果表明,与基于连接的生物标志物相比,基于功率的生物标志物通常更适合检测 SOZ。然而,当两个生物标志物独立优化时,可以达到等效的性能水平。对于功率生物标志物,最佳性能在β和较低的伽马范围内实现,对于连接,最佳性能在较低和较高的伽马范围内实现,均使用发作后 20 或 30 s 的时间段。
本研究的结果强调了在比较不同 SOZ 区分生物标志物时,对频率和时间窗进行此优化步骤的重要性。在为临床应用对回顾性患者数据进行 SOZ 分类器训练时,应考虑此信息。