Suppr超能文献

人类脑电图中癫痫样放电的自动识别与特征描述。

Automatic recognition and characterization of epileptiform discharges in the human EEG.

作者信息

Frost J D

机构信息

Department of Neurology, Baylor College of Medicine, Houston, Texas 77030.

出版信息

J Clin Neurophysiol. 1985 Jul;2(3):231-49. doi: 10.1097/00004691-198507000-00003.

Abstract

Methods proposed for the automatic identification and quantification of epileptiform EEG activity are reviewed, and the potential role of this technology in clinical electroencephalography is assessed. Techniques developed for the detection of spikes, sharp waves, and spike and wave complexes are described. Emphasis is placed on the problems associated with artifact rejection and the need for establishing context-based decision-making processes.

摘要

本文回顾了用于自动识别和量化癫痫样脑电活动的方法,并评估了该技术在临床脑电图中的潜在作用。描述了用于检测棘波、锐波以及棘慢复合波的技术。重点讨论了与伪迹去除相关的问题以及建立基于上下文的决策过程的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验