State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Environ Sci Technol. 2024 Sep 17;58(37):16621-16631. doi: 10.1021/acs.est.4c04691. Epub 2024 Aug 21.
Sunlight-responsive minerals contribute significantly to biogeochemical cycles by activating oxygen (O) to generate reactive oxygen species (ROS). However, the role of crystal water, incorporated into minerals through hydration during rock cycles, in O activation remains largely unexplored. Here, we construct tungstite models containing oxygen vacancies to elucidate the modulation of mineral-based ROS dynamics by the synergy between oxygen vacancy and crystal water. Crystal water promotes the protonation process of superoxide anion radicals to produce hydrogen peroxide (HO) and alleviates its decomposition. This mineral-based HO photosynthesis system efficiently eliminates organic pollutants in a sequential light-dark reaction. Furthermore, this synergy effect can extend to other metal oxide minerals such as TiO, SnO, CuO, ZnO, and BiO. Our results illuminate an overlooked pathway for modulating the protonation process by immobilized water in hydrous minerals, playing a crucial role in ROS storage and migration and pollutant dynamics in a natural environment throughout the day/night cycle.
阳光响应型矿物质通过激活氧气 (O) 生成活性氧物种 (ROS),对生物地球化学循环有重要贡献。然而,在岩石循环过程中通过水合作用掺入矿物质中的结晶水在 O 激活中的作用在很大程度上仍未被探索。在这里,我们构建了含有氧空位的钨铜矿模型,以阐明氧空位与结晶水之间的协同作用对基于矿物质的 ROS 动力学的调制。结晶水促进超氧阴离子自由基的质子化过程,产生过氧化氢 (HO),并缓解其分解。这种基于矿物质的 HO 光合作用系统可在连续的光-暗反应中有效去除有机污染物。此外,这种协同效应可以扩展到其他金属氧化物矿物质,如 TiO、SnO、CuO、ZnO 和 BiO。我们的结果阐明了通过水合矿物质中固定水来调节质子化过程的一种被忽视的途径,在整个日夜循环中,在 ROS 储存和迁移以及污染物动态方面发挥着关键作用。