Suppr超能文献

含持久性自由基的纳米零价铁/生物炭复合材料用于降解对硝基苯酚。

Nanoscale zero-valent iron/biochar composites containing persistent free radicals (PFRs) for degradation of p-nitrophenol.

机构信息

Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610500, People's Republic of China.

School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China.

出版信息

Environ Sci Pollut Res Int. 2024 Aug;31(40):53040-53051. doi: 10.1007/s11356-024-34146-4. Epub 2024 Aug 22.

Abstract

Despite the vital roles of Fe/biochar composites in the Fenton-like systems for eliminating pollutants that have been recognized, the contributions of persistent free radicals (PFRs) of carbon-based materials are typically overlooked. In this study, the high-PFR-containing biochar nanoiron composites were prepared (nZVI/500), and the in situ generation of hydroxyl radicals (·OH) and degradation of p-nitrophenol (PNP) were investigated. The results showed that nZVI/500 could effectively remove PNP in solution within the pH range of 3-8. Quantitative experiments of ·OH presented that, compared with low PFRs-containing composites, nZVI/500 could generate 64.6 µM ·OH in 60 min without any extra energy consumption. Mechanistic studies revealed that (1) both PFRs and Fe are able to utilize dissolved oxygen to generate HO in situ; (2) PFRs can promote the cycling of Fe/Fe in the system due to their strong electron exchange ability; and (3) PFRs directly transfer electrons to HO; therefore, the presence of PFRs accelerates the generation of ·OH in the system and facilitates the removal of PNP. This study provides an important theoretical basis and technical reference for expanding the application of PFR-rich carbon-based materials to remove environmental pollutants.

摘要

尽管 Fe/生物炭复合材料在类 Fenton 体系中消除污染物方面发挥了重要作用,但通常会忽略碳基材料中持久性自由基(PFRs)的贡献。在这项研究中,制备了高 PFR 含量的生物炭纳米铁复合材料(nZVI/500),并研究了其原位生成羟基自由基(·OH)和降解对硝基苯酚(PNP)的性能。结果表明,nZVI/500 可以在 pH 值为 3-8 的范围内有效去除溶液中的 PNP。·OH 的定量实验表明,与低 PFRs 含量的复合材料相比,nZVI/500 无需额外的能量消耗,在 60 分钟内可生成 64.6 µM·OH。机理研究表明:(1)PFRs 和 Fe 都可以利用溶解氧原位生成 HO;(2)PFRs 因其较强的电子交换能力可以促进体系中 Fe/Fe 的循环;(3)PFRs 直接将电子转移给 HO;因此,PFRs 的存在加速了体系中·OH 的生成,促进了 PNP 的去除。本研究为拓展富含 PFR 的碳基材料在去除环境污染物方面的应用提供了重要的理论依据和技术参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验