Prabhu M K, Louwen J N, Vogt E T C, Groot I M N
Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
Ketjen Research, Nieuwendammerkade 1-3, 1022 AB, Amsterdam, The Netherlands.
Nat Commun. 2024 Aug 21;15(1):7170. doi: 10.1038/s41467-024-51549-6.
The process of hydrodesulfurization is one of the most important heterogeneous catalytic reactions in industry as it helps with reducing global SO emissions by selectively removing the sulfur contaminants from commercial fuel. In this work, we successfully combine high-pressure scanning tunneling microscopy and reaction modeling using density functional theory to observe the hydrodesulfurization of methanethiol (CHSH) on the Co-substituted S edges of a Co-promoted MoS model catalyst in situ at near-industrial conditions and investigate the plausible reaction pathways. The active sites on the Co-substituted S edges show a time-varying atomic structure influenced by the hydrodesulfurization reaction rate. The involvement of the edge Co site allows for the C-S bond scission to occur at appreciable rates, and is the critical step in the hydrodesulfurization of CHSH. The atomic structures of the S-edge active sites from our reaction models match excellently with those observed in situ in the experiments.
加氢脱硫过程是工业中最重要的多相催化反应之一,因为它通过从商业燃料中选择性去除硫污染物,有助于减少全球二氧化硫排放。在这项工作中,我们成功地将高压扫描隧道显微镜与使用密度泛函理论的反应建模相结合,在接近工业条件下原位观察甲硫醇(CH₃SH)在钴促进的MoS₂模型催化剂的钴取代硫边缘上的加氢脱硫反应,并研究可能的反应途径。钴取代硫边缘上的活性位点显示出受加氢脱硫反应速率影响的随时间变化的原子结构。边缘钴位点的参与使得C-S键断裂能够以可观的速率发生,并且是CH₃SH加氢脱硫的关键步骤。我们反应模型中硫边缘活性位点的原子结构与实验中原位观察到的结构非常匹配。