文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种通过纳米结构脂质载体包埋降低瑞德西韦细胞毒性和剂量倾泻风险的体外研究。

An in vitro study for reducing the cytotoxicity and dose dumping risk of remdesivir via entrapment in nanostructured lipid carriers.

机构信息

Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Enghelab Ave, P.O. Box: 13145-1384, Tehran, 1417614411, Iran.

出版信息

Sci Rep. 2024 Aug 21;14(1):19360. doi: 10.1038/s41598-024-70003-7.


DOI:10.1038/s41598-024-70003-7
PMID:39169059
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11339451/
Abstract

The aim of this study was to synthesize and evaluate nanostructured lipid carriers (NLCs) loaded with Remdesivir (RDV) to control its side effects in COVID-19 patients. Due to the low solubility and short half-life of RDV in the blood, an injectable formulation was prepared using sulphobutylether-beta-cyclodextrin. However, it can accumulate in the kidney and cause renal impairment. NLCs improve the parenteral delivery of hydrophobic drugs such as RDV by increasing drug solubility and bioavailability. For the synthesis of RDV-NLCs, the aqueous phase containing Tween 80 was injected into the lipid phase under rapid stirring and was sonicated. The experimental conditions were optimized using Box-Behnken design and Design Expert software. The optimum formulation contained a total lipid of 2.13%, a total surfactant of 1%, and a hot bath time of 71 min. The optimum formulation showed particle size, polydispersity index, zeta potential, and entrapment efficiency values of 151.0 ± 1.7 nm (from 149.1 to 152.1), 0.4 ± 0.1 (from 0.3 to 0.5), -43.8 ± 1.2 mV (from -42.4 to -44.7), and 81.34 ± 1.57% (from 79.52 to 82.33%), respectively. RDV-NLCs showed acceptable stability for 30 days at 25 ℃ and were compatible with commonly used intravenous infusion fluids for 48 h. FE-SEM images of RDV-NLC showed spherical particles with a mean diameter of 207 nm. The NLC-RDV formulation showed a sustained release of RDV with a low risk of dose-dumping, minimizing potential side effects. In addition, RDV in the form of RDV-NLC causes less cytotoxicity to healthy normal kidney cells, which is expected to reduce renal impairment in COVID-19 patients.

摘要

本研究旨在合成并评估载雷迪西韦(RDV)的纳米结构化脂质载体(NLC),以控制 COVID-19 患者的副作用。由于 RDV 在血液中的溶解度低且半衰期短,因此使用磺丁基醚-β-环糊精制备了可注射制剂。然而,它会在肾脏中积累并导致肾功能损害。NLC 通过增加药物的溶解度和生物利用度来改善 RDV 等疏水性药物的肠外给药。为了合成 RDV-NLC,将含有吐温 80 的水相在快速搅拌下注入脂质相,并进行超声处理。实验条件通过 Box-Behnken 设计和 Design Expert 软件进行优化。最佳配方含有 2.13%的总脂质、1%的总表面活性剂和 71 分钟的热浴时间。最佳配方的粒径、多分散指数、Zeta 电位和包封效率分别为 151.0±1.7nm(149.1nm 至 152.1nm)、0.4±0.1(0.3nm 至 0.5nm)、-43.8±1.2mV(-42.4mV 至-44.7mV)和 81.34±1.57%(79.52% 至 82.33%)。RDV-NLC 在 25℃下稳定 30 天,与常用的静脉输注液 48 小时相容。RDV-NLC 的 FE-SEM 图像显示出平均直径为 207nm 的球形颗粒。RDV-NLC 制剂显示出 RDV 的持续释放,剂量突释的风险较低,从而最小化了潜在的副作用。此外,以 RDV-NLC 形式存在的 RDV 对健康正常肾脏细胞的细胞毒性较小,有望减少 COVID-19 患者的肾功能损害。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/11339451/b2454fcca807/41598_2024_70003_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/11339451/173fe34d7a71/41598_2024_70003_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/11339451/a9fd45c25d7c/41598_2024_70003_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/11339451/312f32abd528/41598_2024_70003_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/11339451/87eb66172467/41598_2024_70003_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/11339451/b2454fcca807/41598_2024_70003_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/11339451/173fe34d7a71/41598_2024_70003_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/11339451/a9fd45c25d7c/41598_2024_70003_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/11339451/312f32abd528/41598_2024_70003_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/11339451/87eb66172467/41598_2024_70003_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957c/11339451/b2454fcca807/41598_2024_70003_Fig5_HTML.jpg

相似文献

[1]
An in vitro study for reducing the cytotoxicity and dose dumping risk of remdesivir via entrapment in nanostructured lipid carriers.

Sci Rep. 2024-8-21

[2]
Safety, Tolerability, and Pharmacokinetics of Remdesivir, An Antiviral for Treatment of COVID-19, in Healthy Subjects.

Clin Transl Sci. 2020-8-5

[3]
Pharmacokinetic, Pharmacodynamic, and Drug-Interaction Profile of Remdesivir, a SARS-CoV-2 Replication Inhibitor.

Clin Pharmacokinet. 2021-5

[4]
Off-Target Profiling Demonstrates that Remdesivir Is a Highly Selective Antiviral Agent.

Antimicrob Agents Chemother. 2021-1-20

[5]
Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: in vitro, ex vivo and in vivo assessments.

Artif Cells Nanomed Biotechnol. 2018

[6]
Formulation And Evaluation Of Nanostructured Lipid Carriers (NLCs) Of 20(S)-Protopanaxadiol (PPD) By Box-Behnken Design.

Int J Nanomedicine. 2019-10-25

[7]
Development and Validation of High-Performance Liquid Chromatography Method for the Quantification of Remdesivir in Intravenous Dosage Form.

Assay Drug Dev Technol. 2021

[8]
Synthesis and antiviral activity of fatty acyl conjugates of remdesivir against severe acute respiratory syndrome coronavirus 2 and Ebola virus.

Eur J Med Chem. 2021-12-15

[9]
Formulation design, characterization, and in vitro and in vivo evaluation of nanostructured lipid carriers containing a bile salt for oral delivery of gypenosides.

Int J Nanomedicine. 2019-4-1

[10]
Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery.

Int J Pharm. 2019-10-26

引用本文的文献

[1]
Advanced drug delivery systems for oral squamous cell carcinoma: a comprehensive review of nanotechnology-based and other innovative approaches.

Front Drug Deliv. 2025-6-27

[2]
Development and evaluation of the rivaroxaban loaded nanostructured lipid carriers for improved oral bioavailability and safety.

Sci Rep. 2025-7-2

[3]
Unlocking the potential of remdesivir: innovative approaches to drug delivery.

Drug Deliv Transl Res. 2025-4-17

本文引用的文献

[1]
OTUD1 promotes hypertensive kidney fibrosis and injury by deubiquitinating CDK9 in renal epithelial cells.

Acta Pharmacol Sin. 2024-4

[2]
Remdesivir-Loaded Nanoliposomes Stabilized by Chitosan/Hyaluronic Acid Film with a Potential Application in the Treatment of Coronavirus Infection.

Neurol Int. 2023-10-30

[3]
Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review.

Pharmaceutics. 2023-5-25

[4]
Population Pharmacokinetics of Remdesivir and GS-441524 in Hospitalized COVID-19 Patients.

Antimicrob Agents Chemother. 2022-6-21

[5]
Recent Progress in Drug Release Testing Methods of Biopolymeric Particulate System.

Pharmaceutics. 2021-8-23

[6]
Liver and kidney function in patients with Covid-19 treated with remdesivir.

Br J Clin Pharmacol. 2021-11

[7]
Development of Remdesivir as a Dry Powder for Inhalation by Thin Film Freezing.

Pharmaceutics. 2020-10-22

[8]
Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition.

Eur J Pharm Sci. 2020-9-1

[9]
Remdesivir in Patients with Acute or Chronic Kidney Disease and COVID-19.

J Am Soc Nephrol. 2020-7

[10]
Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19.

ACS Cent Sci. 2020-5-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索