Plank Michael J, Simpson Matthew J
School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand.
School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
R Soc Open Sci. 2024 Aug 21;11(8):240733. doi: 10.1098/rsos.240733. eCollection 2024 Aug.
Parameter inference and uncertainty quantification are important steps when relating mathematical models to real-world observations and when estimating uncertainty in model predictions. However, methods for doing this can be computationally expensive, particularly when the number of unknown model parameters is large. The aim of this study is to develop and test an efficient profile likelihood-based method, which takes advantage of the structure of the mathematical model being used. We do this by identifying specific parameters that affect model output in a known way, such as a linear scaling. We illustrate the method by applying it to three toy models from different areas of the life sciences: (i) a predator-prey model from ecology; (ii) a compartment-based epidemic model from health sciences; and (iii) an advection-diffusion reaction model describing the transport of dissolved solutes from environmental science. We show that the new method produces results of comparable accuracy to existing profile likelihood methods but with substantially fewer evaluations of the forward model. We conclude that our method could provide a much more efficient approach to parameter inference for models where a structured approach is feasible. Computer code to apply the new method to user-supplied models and data is provided via a publicly accessible repository.
参数推断和不确定性量化是将数学模型与实际观测联系起来以及估计模型预测中的不确定性时的重要步骤。然而,进行这些操作的方法可能在计算上非常昂贵,尤其是当未知模型参数数量很大时。本研究的目的是开发并测试一种基于高效轮廓似然的方法,该方法利用所使用数学模型的结构。我们通过识别以已知方式影响模型输出的特定参数来实现这一点,例如线性缩放。我们将该方法应用于生命科学不同领域的三个简单模型来进行说明:(i) 生态学中的捕食者 - 猎物模型;(ii) 健康科学中的基于 compartments 的流行病模型;以及 (iii) 环境科学中描述溶解溶质传输的平流 - 扩散反应模型。我们表明,新方法产生的结果与现有轮廓似然方法具有相当的准确性,但对正向模型的评估次数要少得多。我们得出结论,对于可行结构化方法的模型,我们的方法可以为参数推断提供一种更高效的途径。通过一个可公开访问的存储库提供了将新方法应用于用户提供的模型和数据的计算机代码。