Pearlman D A, Kim S H
Department of Chemistry, Lawrence Berkeley Laboratory, University of California, Berkeley 94720.
J Biomol Struct Dyn. 1985 Aug;3(1):99-125. doi: 10.1080/07391102.1985.10508401.
We have examined the conformational energetics of the eight most commonly occurring nucleosides--A, U, G, C, dA, dT, dG, dC--as monitored by a semi-empirical energy force field. These are the first reported calculations to completely explore the entire conformational spaces available to all eight major nucleosides using experimentally consistent furanose geometries and an appropriate force field. Central to our approach is the ability to model an experimentally reasonable furanose for each nucleoside directly from only one parameter, the phase angle of pseudorotation P, as described in the previous paper (D.A. Pearlman, and S.-H. Kim, preceeding paper in this issue). This allows us to specify the conformation of a nucleoside by three variables: torsion angle gamma (O5'-C5'-C4'-C3'); torsion angle chi (O4'-C1'-N9/N1-C4/C2); and P. In our study each of these parameters was allowed to vary independently and in small increments over the range 0-360 degrees. The empirically observed preferences for C3'-endo and C2'-endo sugar conformations, for anti and syn values of chi and for staggered (g+, t, g-) values of gamma can be explained on the basis of the energy maps so obtained. Finer details, such as the different conformational preferences of ribonucleosides and deoxyribonucleosides and of purines and pyrimidines, can also be extracted from these maps and are consistent with experiment. The calculations support previous descriptions of pseudorotation as hindered. Statistical Boltzmann population factors for different conformational ranges in gamma, chi, and P, as predicted by the calculations, are consistent with factors obtained from crystallographic data. The excellent results here provide additional support for the suitability of the new sugar modeling technique used.
我们已经通过一个半经验能量力场监测,研究了八种最常见核苷(A、U、G、C、dA、dT、dG、dC)的构象能量学。这些是首次报道的计算,使用实验一致的呋喃糖几何结构和适当的力场,全面探索了所有八种主要核苷可利用的整个构象空间。我们方法的核心是能够仅从一个参数——伪旋转P的相角,直接为每个核苷模拟出实验合理的呋喃糖,如前一篇论文(D.A. 珀尔曼和S.-H. 金,本期前文)所述。这使我们能够通过三个变量指定核苷的构象:扭转角γ(O5'-C5'-C4'-C3');扭转角χ(O4'-C1'-N9/N1-C4/C2);以及P。在我们的研究中,允许这些参数中的每一个在0 - 360度范围内独立且以小增量变化。基于如此获得的能量图,可以解释实验观察到的对C3'-内型和C2'-内型糖构象的偏好、对χ的反式和顺式值以及对γ的交错(g +、t、g -)值的偏好。更细微的细节,例如核糖核苷和脱氧核糖核苷以及嘌呤和嘧啶的不同构象偏好,也可以从这些图中提取出来,并且与实验结果一致。这些计算支持了先前关于伪旋转受阻的描述。计算预测的γ、χ和P不同构象范围的统计玻尔兹曼分布因子与从晶体学数据获得的因子一致。这里的出色结果为所使用的新糖建模技术的适用性提供了额外支持。