Kavimani V, Gopal P M, Keerthiveettil Ramakrishnan Sumesh, Giri Jayant, Alarifi Abdullah, Sathish T
Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, India.
Centre for Material Science, Karpagam Academy of Higher Education, Coimbatore, India.
Heliyon. 2024 Jul 25;10(15):e35194. doi: 10.1016/j.heliyon.2024.e35194. eCollection 2024 Aug 15.
This work intended to improve the precision and machining efficiency of Magnesium alloy (Mg-Li-Sr) using Wire electrical discharge machining (WEDM). Mg-Li-Sr alloy is prepared through inert gas assisted stir casting route. Taguchi approach is used for experimental design for WEDM parameter such as pulse OFF time, pulse ON time, wire feed rate, servo voltage and current. L27 orthogonal array is considered to understand the influence of control parameter such as Kerf Width (KW), Roughness of the surface (Ra), Material Removal Rate (MRR). Integration of the CRITIC (Criteria Importance Through Intercriteria Correlation) -WASPAS (Weighted Aggregated Sum Product Assessment) multi-objective optimization method with Artificial Neural Network (ANN) modelling with different network structure for prediction and optimization is a novel approach that significantly improves prediction accuracy and machining outcomes. The developed ANN model with better R value of 99.9 % has better ability for prediction while correlated with formulated conventional regression equation. The error percentages identified through confirmation tests for regression and ANN models are Ra - 8.5 % and 3.4 %, MRR - 5.9 % and 2.8 %, KW - 6.7 % and 2.2 % respectively. Optimal output response attained by CRITIC-WASPAS approach yields surface roughness of 4.62 μm, material removal rate of 0.073 g/min and kerf width of 0.388 μm.
这项工作旨在通过电火花线切割加工(WEDM)提高镁合金(Mg-Li-Sr)的加工精度和加工效率。Mg-Li-Sr合金通过惰性气体辅助搅拌铸造工艺制备。田口方法用于电火花线切割加工参数的实验设计,如脉冲关断时间、脉冲开启时间、丝进给速度、伺服电压和电流。采用L27正交阵列来了解诸如切口宽度(KW)、表面粗糙度(Ra)、材料去除率(MRR)等控制参数的影响。将CRITIC(基于准则间相关性的准则重要性)-WASPAS(加权聚合和积评估)多目标优化方法与具有不同网络结构的人工神经网络(ANN)建模相结合进行预测和优化,是一种显著提高预测精度和加工结果的新方法。所开发的人工神经网络模型具有99.9%的更好R值,与公式化的传统回归方程相关时具有更好的预测能力。通过回归模型和人工神经网络模型的验证试验确定的误差百分比分别为:Ra - 8.5%和3.4%,MRR - 5.9%和2.8%,KW - 6.7%和2.2%。通过CRITIC-WASPAS方法获得的最佳输出响应产生的表面粗糙度为4.62μm,材料去除率为0.073g/min,切口宽度为0.388μm。