Xin Tongzheng, Zhao Yuhong, Mahjoub Reza, Jiang Jiaxi, Yadav Apurv, Nomoto Keita, Niu Ranming, Tang Song, Ji Fan, Quadir Zakaria, Miskovic David, Daniels John, Xu Wanqiang, Liao Xiaozhou, Chen Long-Qing, Hagihara Koji, Li Xiaoyan, Ringer Simon, Ferry Michael
School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
College of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
Sci Adv. 2021 Jun 2;7(23). doi: 10.1126/sciadv.abf3039. Print 2021 Jun.
Strengthening of magnesium (Mg) is known to occur through dislocation accumulation, grain refinement, deformation twinning, and texture control or dislocation pinning by solute atoms or nano-sized precipitates. These modes generate yield strengths comparable to other engineering alloys such as certain grades of aluminum but below that of high-strength aluminum and titanium alloys and steels. Here, we report a spinodal strengthened ultralightweight Mg alloy with specific yield strengths surpassing almost every other engineering alloy. We provide compelling morphological, chemical, structural, and thermodynamic evidence for the spinodal decomposition and show that the lattice mismatch at the diffuse transition region between the spinodal zones and matrix is the dominating factor for enhancing yield strength in this class of alloy.
已知镁(Mg)的强化是通过位错积累、晶粒细化、形变孪晶以及溶质原子或纳米尺寸析出相的织构控制或位错钉扎来实现的。这些强化方式产生的屈服强度与某些等级的铝等其他工程合金相当,但低于高强度铝合金、钛合金和钢。在此,我们报道了一种具有特定屈服强度的旋节线强化超轻镁合金,其屈服强度超过了几乎所有其他工程合金。我们提供了令人信服的形态学、化学、结构和热力学证据来证明旋节线分解,并表明旋节线区域与基体之间扩散过渡区的晶格失配是提高此类合金屈服强度的主导因素。