Suppr超能文献

具有熔化传热的磁流体动力学纳米流体在多孔楔体上流动的解析解。

Analytical solution for MHD nanofluid flow over a porous wedge with melting heat transfer.

作者信息

Ahmadi Azar Ali, Jalili Payam, Poolaei Moziraji Zahra, Jalili Bahram, Domiri Ganji Davood

机构信息

Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.

Department of Mechanical Engineering, Babol Noshirvani University of Technology, P.O. Box 484, Babol, Iran.

出版信息

Heliyon. 2024 Jul 22;10(15):e34888. doi: 10.1016/j.heliyon.2024.e34888. eCollection 2024 Aug 15.

Abstract

This study employs the Hybrid Analytical-Numerical (HAN) method to investigate steady two-dimensional magnetohydrodynamic (MHD) nanofluid flow over a permeable wedge. Analyzing hyperbolic tangent nanofluid flow, the governing time-independent partial differential equations (PDEs) for continuity, momentum, energy, and concentration transform into a set of nonlinear third-order coupled ordinary differential equations (ODEs) through similarity transformations. These ODEs encompass critical parameters such as Lewis and Prandtl numbers, Brownian diffusion, Weissenberg number, thermophoresis, Dufour and Soret numbers, magnetic field strength, thermal radiation, power law index, and medium permeability. The study explores how variations in these parameters impact the velocity field, skin friction coefficient, Nusselt, and Sherwood numbers. Noteworthy findings include the sensitivity of fluid velocity to parameters like Weissenberg number, power law index, wedge angle, magnetic field strength, permeability, and melting heat transfer. The skin friction coefficient experiences a significant increase with specific parameter changes, while Nusselt and Sherwood numbers remain relatively constant. The local Reynolds number significantly affects Nusselt and Sherwood numbers, with a less pronounced impact on the skin friction coefficient. The study's uniqueness lies in employing the analytical HAN method and extracting recent insights from the results.

摘要

本研究采用混合解析-数值(HAN)方法,研究二维稳态磁流体动力学(MHD)纳米流体在可渗透楔形物上的流动。通过对双曲正切纳米流体流动进行分析,连续性、动量、能量和浓度的非时间相关偏微分方程(PDEs)通过相似变换转化为一组非线性三阶耦合常微分方程(ODEs)。这些ODEs包含诸如刘易斯数和普朗特数、布朗扩散、魏森贝格数、热泳、杜福尔数和索雷特数、磁场强度、热辐射、幂律指数和介质渗透率等关键参数。该研究探讨了这些参数的变化如何影响速度场、表面摩擦系数、努塞尔数和舍伍德数。值得注意的发现包括流体速度对魏森贝格数、幂律指数、楔形角、磁场强度、渗透率和熔化热传递等参数的敏感性。表面摩擦系数随特定参数变化显著增加,而努塞尔数和舍伍德数保持相对恒定。局部雷诺数对努塞尔数和舍伍德数有显著影响,对表面摩擦系数的影响较小。该研究的独特之处在于采用了解析HAN方法并从结果中提取了最新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7958/11333906/61658534e38d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验