Suppr超能文献

用于优化基于眼电图的眼动活动解码的谐波增强:一种结合谐波源分离和集合经验模态分解的混合方法。

Harmonic enhancement to optimize EOG based ocular activity decoding: A hybrid approach with harmonic source separation and EEMD.

作者信息

Demirel Çağatay, Reguş Livia, Köse Hatice

机构信息

Computer Engineering Department, Istanbul Technical University, Maslak, 34467 Sarıyer, Istanbul, Turkey.

Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, Nijmegen, 6525 EN, Netherlands.

出版信息

Heliyon. 2024 Jul 29;10(15):e35242. doi: 10.1016/j.heliyon.2024.e35242. eCollection 2024 Aug 15.

Abstract

Intelligent robotic systems for patients with motor impairments have gained significant interest over the past few years. Various sensor types and human-machine interface (HMI) methods have been developed; however, most research in this area has focused on eye-blink-based binary control with minimal electrode placements. This approach restricts the complexity of HMI systems and does not consider the potential of multiple-activity decoding via static ocular activities. These activities pose a decoding challenge due to non-oscillatory noise components, such as muscle tremors or fatigue. To address this issue, a hybrid preprocessing methodology is proposed that combines harmonic source separation and ensemble empirical mode decomposition in the time-frequency domain to remove percussive and non-oscillatory components of static ocular movements. High-frequency components are included in the harmonic enhancement process. Next, a machine learning model with dual input of time-frequency images and a vectorized feature set of consecutive time windows is employed, leading to a 3.8% increase in performance as compared to without harmonic enhancement in leave-one-session-out cross-validation (LOSO). Additionally, a high correlation is found between the harmonic ratios of the static activities in the Hilbert-Huang frequency spectrum and LOSO performances. This finding highlights the potential of leveraging the harmonic characteristics of the activities as a discriminating factor in machine learning-based classification of EOG-based ocular activities, thus providing a new aspect of activity enrichment with minimal performance loss for future HMI systems.

摘要

在过去几年中,用于运动障碍患者的智能机器人系统引起了广泛关注。人们已经开发了各种传感器类型和人机界面(HMI)方法;然而,该领域的大多数研究都集中在电极放置最少的基于眨眼的二元控制上。这种方法限制了HMI系统的复杂性,并且没有考虑通过静态眼部活动进行多活动解码的潜力。由于肌肉震颤或疲劳等非振荡噪声成分,这些活动带来了解码挑战。为了解决这个问题,提出了一种混合预处理方法,该方法在时频域中结合了谐波源分离和总体经验模态分解,以去除静态眼部运动的冲击性和非振荡成分。高频成分包含在谐波增强过程中。接下来,采用具有时频图像和连续时间窗口的矢量化特征集双重输入的机器学习模型,与在留一会话交叉验证(LOSO)中不进行谐波增强相比,性能提高了3.8%。此外,在希尔伯特-黄频谱中静态活动的谐波比率与LOSO性能之间发现了高度相关性。这一发现突出了利用活动的谐波特征作为基于机器学习的眼电图(EOG)眼部活动分类中的判别因素的潜力,从而为未来的HMI系统提供了一种在性能损失最小的情况下丰富活动的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/11336459/749cc2b8fa38/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验