Guan Yani, Kümper Justus, Mürtz Sonja D, Kumari Simran, Hausoul Peter J C, Palkovits Regina, Sautet Philippe
Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
Chem Sci. 2024 Aug 19;15(35):14485-96. doi: 10.1039/d4sc01944j.
Cu dissolution has been identified as the dominant process that causes cathode degradation and losses even under cathodic conditions involving methylamine. Despite extensive experimental research, our fundamental and theoretical understanding of the atomic-scale mechanism for Cu dissolution under electrochemical conditions, eventually coupled with surface restructuring processes, is limited. Here, driven by the observation that the working Cu electrode is corroded using mixtures of acetone and methylamine even under reductive potential conditions (-0.75 V RHE), we employed Grand Canonical density functional theory to understand this dynamic process under potential from a microscopic perspective. We show that amine ligands in solution directly chemisorb on the electrode, coordinate with the metal center, and drive the rearrangement of the copper surface by extracting Cu as adatoms in low coordination positions, where other amine ligands can coordinate and stabilize a surface copper-ligand complex, finally forming a detached Cu-amine cationic complex in solution, even under negative potential conditions. Calculations predict that dissolution would occur for a potential of -1.1 V RHE or above. Our work provides a fundamental understanding of Cu dissolution facilitated by surface restructuring in amine solutions under electroreduction conditions, which is required for the rational design of durable Cu-based cathodes for electrochemical amination or other amine involving reduction processes.
铜溶解已被确定为即使在涉及甲胺的阴极条件下也会导致阴极降解和损失的主要过程。尽管进行了广泛的实验研究,但我们对电化学条件下铜溶解的原子尺度机制以及最终与表面重构过程相结合的基本和理论理解仍然有限。在这里,基于即使在还原电位条件下(相对于可逆氢电极,RHE为-0.75V)工作的铜电极也会被丙酮和甲胺的混合物腐蚀这一观察结果,我们采用巨正则密度泛函理论从微观角度理解该电位下的这一动态过程。我们表明,溶液中的胺配体直接化学吸附在电极上,与金属中心配位,并通过在低配位位置提取作为吸附原子的铜来驱动铜表面的重排,在这些位置其他胺配体可以配位并稳定表面铜 - 配体络合物,最终在溶液中形成分离的铜 - 胺阳离子络合物,即使在负电位条件下也是如此。计算预测,相对于可逆氢电极电位为-1.1V或更高时会发生溶解。我们的工作为在电还原条件下胺溶液中通过表面重构促进的铜溶解提供了基本理解,这是合理设计用于电化学胺化或其他涉及胺的还原过程的耐用铜基阴极所必需的。