Suppr超能文献

与多臂赌博机的匹配:人类配偶搜索的强化学习模型

Mating with Multi-Armed Bandits: Reinforcement Learning Models of Human Mate Search.

作者信息

Conroy-Beam Daniel

机构信息

Department of Psychological and Brain Sciences, University of California, Santa Barbara.

出版信息

Open Mind (Camb). 2024 Aug 15;8:995-1011. doi: 10.1162/opmi_a_00156. eCollection 2024.

Abstract

Mate choice requires navigating an exploration-exploitation trade-off. Successful mate choice requires choosing partners who have preferred qualities; but time spent determining one partner's qualities could have been spent exploring for potentially superior alternatives. Here I argue that this dilemma can be modeled in a reinforcement learning framework as a multi-armed bandit problem. Moreover, using agent-based models and a sample of = 522 real-world romantic dyads, I show that a reciprocity-weighted Thompson sampling algorithm performs well both in guiding mate search in noisy search environments and in reproducing the mate choices of real-world participants. These results provide a formal model of the understudied psychology of human mate search. They additionally offer implications for our understanding of person perception and mate choice.

摘要

配偶选择需要在探索与利用之间进行权衡。成功的配偶选择需要选择具有理想特质的伴侣;但花在确定一个伴侣特质上的时间,本可用于寻找可能更优秀的替代者。在此我认为,这种困境可以在强化学习框架中建模为多臂老虎机问题。此外,通过基于主体的模型以及522对现实世界浪漫伴侣的样本,我表明互惠加权汤普森采样算法在嘈杂搜索环境中指导配偶搜索以及再现现实世界参与者的配偶选择方面都表现良好。这些结果为研究不足的人类配偶搜索心理提供了一个形式化模型。它们还为我们对人物感知和配偶选择的理解提供了启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验