Suppr超能文献

具有高输出范围与分辨率比及自感知能力的基于压电的大角度行程快速转向镜。

Piezoelectric-based large-angle stroke fast steering mirror with high ratio of output range to resolution and self-sensing capability.

作者信息

Han Wenwen, Zhai Chongpu, Shao Shubao, Tian Zheng, Lu Qian, Zhang Shuwen, Xu Minglong

机构信息

State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

China Academy of Space Technology (Xi'an), Xi'an 710100, China.

出版信息

Rev Sci Instrum. 2024 Aug 1;95(8). doi: 10.1063/5.0205242.

Abstract

In space optical applications, the piezoelectric-actuated fast steering mirror (FSM) is one of the pivotal components for high-precision beam capturing and trajectory tracking. The FSM is restrained in small-angle scanning applications due to the short actuation stroke of the incorporated piezoelectric materials. This study introduces a dual-axis sub-radian stroke FSM with a high ratio of output range to resolution and self-sensing capability, based on cascading structures for displacement amplification and flexible parts for feedback. Theoretical analyses and finite element analysis (FEA) are applied to elucidate the driving and deformation mechanisms of the proposed FSM structure. To ensure the performance of the proposed FSM, the double-loop control strategies are implemented independently for rotation around the two orthogonal axes. Experimental results reveal that both axes can rotate 148.67 mrad under the closed-loop control, with the ratio of output range to resolution larger than 3.90 × 104, superior to existing FSMs. We further demonstrate with designed experiments of tracking complex trajectories that the relative tracking accuracy error remains lower than 0.02%.

摘要

在空间光学应用中,压电驱动快速转向镜(FSM)是高精度光束捕获和轨迹跟踪的关键部件之一。由于内置压电材料的驱动行程较短,FSM在小角度扫描应用中受到限制。本研究基于用于位移放大的级联结构和用于反馈的柔性部件,引入了一种具有高输出范围与分辨率比以及自传感能力的双轴亚弧度行程FSM。应用理论分析和有限元分析(FEA)来阐明所提出的FSM结构的驱动和变形机制。为确保所提出的FSM的性能,针对绕两个正交轴的旋转独立实施双环控制策略。实验结果表明,在闭环控制下,两个轴均可旋转148.67毫弧度,输出范围与分辨率之比大于3.90×104,优于现有FSM。我们通过跟踪复杂轨迹的设计实验进一步证明,相对跟踪精度误差保持低于0.02%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验