Suppr超能文献

一种基于弹性过滤器的可适应颗粒物污染水平的空气过滤系统,用于降低能耗。

A PM pollution-level adaptive air filtration system based on elastic filters for reducing energy consumption.

作者信息

Niu Zhuolun, He Qiguang, Chen Chun

机构信息

Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China.

Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China.

出版信息

J Hazard Mater. 2024 Oct 5;478:135546. doi: 10.1016/j.jhazmat.2024.135546. Epub 2024 Aug 15.

Abstract

Exacerbated by human activities and natural events, air pollution poses severe health risks, requiring effective control measures to ensure healthy living environments. Traditional filtration systems that employ high-efficiency particulate air (HEPA) filters are capable of effectively removing particulate matter (PM) in indoor environments. However, these systems often work without considering the fluctuations in air pollution levels, leading to high energy consumption. This study proposed a novel PM pollution-level adaptive air filtration system that combined elastic thermoplastic polyurethane (TPU) filters and an Internet of Things (IoT) system. The developed system can effectively adjust its filtration performance (i.e., pressure drop and PM filtration efficiency) in response to real-time air quality conditions by mechanically altering the structures of TPU filters. Furthermore, while operating in varied pollution conditions, the proposed system demonstrated remarkable reductions in pressure drop without notably compromising the pollution control capability. Finally, the energy consumption of the pollution-level adaptive air filtration system was estimated when applied in mechanical ventilation systems in different cities (Hong Kong, Beijing, and Xi'an) with various pollution conditions. The results revealed that, compared to a traditional fixed system, the annual energy consumption could be reduced by up to ∼26.4 % in Hong Kong.

摘要

受人类活动和自然事件的影响,空气污染加剧,带来了严重的健康风险,需要采取有效的控制措施来确保健康的生活环境。采用高效空气过滤器(HEPA)的传统过滤系统能够有效去除室内环境中的颗粒物(PM)。然而,这些系统在运行时往往不考虑空气污染水平的波动,导致能源消耗较高。本研究提出了一种新型的PM污染水平自适应空气过滤系统,该系统结合了弹性热塑性聚氨酯(TPU)过滤器和物联网(IoT)系统。所开发的系统能够通过机械改变TPU过滤器的结构,根据实时空气质量状况有效调整其过滤性能(即压降和PM过滤效率)。此外,在不同污染条件下运行时,该系统在压降方面有显著降低,且不会明显损害污染控制能力。最后,对污染水平自适应空气过滤系统应用于不同污染条件的不同城市(香港、北京和西安)的机械通风系统时的能源消耗进行了估算。结果表明,与传统的固定系统相比,在香港,每年的能源消耗最多可降低约26.4%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验